• 제목/요약/키워드: 개별 문자

검색결과 116건 처리시간 0.022초

영문 명함 영상에서의 문자 영역 추출에 관한 연구 (A Study on Character Area Extraction of An English Calling Card Image)

  • 이지훈;류재욱;이준행;신철수;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.750-753
    • /
    • 2003
  • 본 논문에서는 명함 영상에서 문자 영역을 추출하기 위해서 전처리 과정을 수행하여 잡영을 제거한다. 잡영이 제거된 명함 영상을 3배로 축소하여 가로 스미어링을 적용하여 문자열의 후보 영역을 추출하고 문자열과 비문자열의 영역으로 분리한 후, 문자열 영역에 세로 스미어링을 적용한다. 추출된 문자열 영역과 세로 스미어링된 문자열 영역에 대해 OR연산을 수행하여 문자의 특징이 분리되는 것을 제거하고 윤곽선 따라가기 알고리즘을 적용하여 문자의 영역을 추출한다 제안된 방법을 실제 영문 명함의 개별 문자 추출에 적용한 결과, 기존의 영문 명함 추출 방법보다 개선되었다.

  • PDF

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증

  • 장도원;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.547-556
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

홍용 문자 코드 집합을 위한 계층적 다중문자 인식기 (Hierarchical Multi-Classifier for the Mixed Character Code Set)

  • 김도현;박재현;김철기;차의영
    • 한국정보통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.1977-1985
    • /
    • 2007
  • 문자 인식은 인공지능의 한 분야로써 자동화 시스템, 로봇, HCI 분야에서 그 응용성 이 증대되고 있는 첨단 기술이다. 본 논문에서는 숫자, 기호, 영어, 한글이 여러 가지 형태로 조합되어 사용될 수 있는 영역에서의 문자 인식을 위해 인식 문자 집합과 대표 문자를 도입하였다. 여러 가지 조합의 언어 집합에 따른 소규모 인식기를 계층적으로 조합하여 인식 결과의 정확성을 높이고 시간 비용을 줄일 수 있는 효율적인 인식기 구조를 제안하였다. 그리고 학습 성능이 우수한 Delta-bar-delta 알고리즘을 이용하여 개별 소규모 인식기를 학습한 다음 다양한 개별 문자를 대상으로 그 인식 성능을 살펴본 결과 99%의 인식률을 획득함으로써 혼용 언어 문자 인식의 효율성과 신뢰성을 증명하였다.

RGB 컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 개별 문자 추출 (Character Extraction of Car License Plates using RGB Color Information and Fuzzy Binarization)

  • 김광백;김문환;노영욱
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.80-87
    • /
    • 2004
  • 본 논문에서는 RGB 컬러 정보와 퍼지 이진화를 이용하여 차량 번호판의 개별 문자를 추출하는 방법을 제안한다. 제안된 방법은 비 영업용 차량 영상에서 녹색의 분포가 밀집되어 있는 영역들을 번호판의 후보 영역으로 추출하고 번호판의 후보 영역에서 흰색의 밀집도가 높은 부분을 번호판의 영역으로 선택한다. 개별 문자 추출은 추출된 번호판 영역에서 3${\times}$3소벨 마스크를 이용하여 잡음을 제거하고 퍼지 이진화 방법을 적용하여 번호판의 영역을 이진화한 다음에 윤곽선 추적 알고리즘을 적용하여 개별 문자를 추출한다. 제안된 방법을 실제 비 영업용 차량 번호판에 적용한 결과, 기존의 방법보다 번호판 영역에서 개별 문자의 추출률이 개선된 것을 확인하였다.

효과적인 후판의 제품번호 검출 방법 (An Effective Method of Product Number Detection from Thick Plates)

  • 박상현
    • 한국전자통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.139-148
    • /
    • 2015
  • 본 논문에서는 여러 장의 후판이 포함된 영상에서 제품번호 문자열을 추출하고 문자를 분리하는 알고리즘을 제안한다. 일반적으로 후판 영상은 여러 개의 후판을 포함하고 있다. 후판의 제품번호를 추출하기 위해서는 먼저 개별 후판을 분리하여야 하며, 이를 위해 후판의 직선 에지를 검출하고 군집화를 수행한다. 다음으로 분리된 개별 후판을 대상으로 배경 정보를 제거하여 후판의 제품번호 문자열을 검출한다. 후판의 배경은 철판의 어두운 부분과 제품번호를 출력하기 위한 흰색 페인트 부분으로 구성되며, 제안하는 방법에서는 두 부분을 구분하여 두 단계로 배경을 제거한다. 배경을 제거한 영상에 대해서 후판의 제품번호 문자열의 특성을 고려하여 개별 문자열을 추출한다. 다양한 후판 영상에 대해서 실험을 수행한 결과는 제안하는 알고리즘이 전체 영상에서 각각의 후판을 효과적으로 검출하고 개별 후판 영상에서 제품번호를 정확하게 추출함을 보여준다.

명암도 변화와 Canny 에지를 이용한 컨테이너 영상의 문자인식에 관한 연구 (A Study on Character Recognition of Container Image using Brightness Variation and Canny Edge)

  • 남미영;임은경;허남숙;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.111-115
    • /
    • 2001
  • 컨테이너 영상의 문자를 인식하는데 있어 정규화 되어 있지 않은 컨테이너 영상의 문자영역을 추출한다는 것은 어렵다. 색깔. 위치, 글자 크기 등이 정해져 있지 않기 때문에 일정한 규칙으로 찾기는 힘들다. 따라서 본 논문에서는 이러한 특성을 고려하여 형태학적인 특성이 아니라 명암도를 조사하여 문자가 분포할 가능성이 있는 후보 영역을 찾고 Canny 에지 추출 기법과 에지 추적 기법으로서 문자가 있는 영역을 추출한다. 추출된 컨테이너의 문자 영역에서 히스토그램 방법을 이용하여 개별 문자를 추출하고 ART 알고리즘을 이용하여 인식한다. 실험 결과에서는 여러 영상에 대해 인식율이 우수한 것을 보인다.

  • PDF

항만 영상정보시스템 구축을 위한 컨테이너 식별자 인식 (A Recognition Method of Container ISO-code for Vision & Information System in Harbors)

  • 구경모;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.721-723
    • /
    • 2007
  • 현재 항만의 컨테이너 양하 및 적하 과정에서 획득되는 컨테이너 영상은 크기 및 위치가 정형화되어 있지 않고, Yard Tractor의 정차 차선과 컨테이너의 크기 등의 외부 환경 변화로 인해 인식에 적합한 영상을 획득하기 어렵다. 본 논문에서는 Top-Hat Transform을 이용하여 실시간 영상으로부터 문자의 영역을 추정하고, 카메라의 PAN/TILT/ZOOM 기능을 이용한 시선이동을 통해 문자인식에 적합한 영상을 획득한다. 획득된 컨테이너 영상으로부터 Top-Hat Transform 및 Histogram Projection을 이용하여 식별자 영역을 추출하고 이진화한 뒤, Labeling 된 결과를 토대로 배경과 문자영역을 구분하고 개별 문자들을 추출한다. 이후 오류역전파 알고리즘을 이용하여 추출된 개별 문자들을 인식한다. 실제 부두에 설치하여 제안된 컨테이너 식별자 영상 획득 및 인식 방법이 우수함을 확인하였다.

  • PDF

윤곽선 추적 알고리즘과 개선된 ART1을 이용한 영문 명함 인식에 관한 연구 (A Study on the Recognition of an English Calling Card by using Contour Tracking Algorithm and Enhanced ART1)

  • 김광백;김철기;김정원
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.105-115
    • /
    • 2002
  • 본 논문에서는 4 방향 윤곽선 추적 알고리즘(contour tracking algorithm)과 개선된 ART1을 이용한 영문 명함인식 방법을 제안한다. 영문 명함 영상에서 문자열 추출은 영상을 3배로 축소하여 수평 스미어링 기법(smearing method)과 4방향 윤곽선 추적 방법을 적용하여 문자열 후보 영역을 추출하고 수평 및 수직의 비율과 면적을 이용하여 문자열 영역과 비문자열 영역을 구분하였다. 추출된 문자열 영역에서 개별 문자 추출은 수평 스미링 기법과 윤곽선 추적 알고리즘을 이용하여 추출하였고 개별 문자들의 인식은 ART1 알고리즘을 개선하여 인식에 적용하였다. 본 논문에서 제안한 ARTI 알고리즘은 퍼지 합 접속 연산자를 이용하여 유사도를 동적으로 조정함으로써 기존의 ART1을 개선하였다. 추출 및 인식 실험 결과, 제안된 추출 및 인식 방법이 영문 명함 인식에서 효율적인 것을 확인하였다.

  • PDF

개선된 신경망과 사진 인증을 이용한 여권 인식 (Recognition of Passports using Enhanced Neural Networks and Photo Authentication)

  • 김광백;박현정
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.983-989
    • /
    • 2006
  • 현재의 출입국 관리는 여권을 제시하면 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권 데이터베이스와 대비하는 것이다. 본 논문에서는 여권의 정보를 인식 할 수 있는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 ART2 알고리즘을 RBF 네트워크의 중간층으로 적용하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법으로 동작하는 RBF 네트워크를 적용한다. 사진 영역은 코드의 문자열 영역을 추출한 후에 코드의 문자열 영역이 시작되는 좌표를 중심으로 사진 영역을 추출한 후, Luminance, Edge, Hue 정보를 이용하여 사진 부분을 검증한다. 검증된 사진 부분 영상은 ART2 알고리즘을 적용하여 사진의 특징들을 분류하고, 이를 이용하여 사진 인증을 하게 된다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

안드로이드 기기와 신경망을 이용한 차량 번호판 인식 (Vehicle License Plate Recognition Using Neural Networks and Android Devices)

  • 한종우;김윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.41-44
    • /
    • 2015
  • 본 논문에서는 안드로이드 기기를 활용하여 차량의 번호판을 인식하는 시스템을 제안한다. 이 시스템은 안드로이드 기기로 촬영한 차량의 이미지를 이용하여 번호판을 인식한다. 촬영한 이미지에서 번호판 영역을 추출한 후 번호판 영역 내에서 각각의 문자를 개별 추출한다. 추출된 각각의 문자에 대하여 세선화를 수행하고 세선화 후 얻은 이미지를 신경망의 입력으로 이용하여 최종적으로 개별의 문자를 인식하고 결과를 안드로이드 기기에 출력한다. 안드로이드 기기를 이용하여 바로 번호판을 인식할 수 있기 때문에 시, 공간에 대한 제약이 없으며 신경망을 사용하기 때문에 기존의 문자 인식 방법보다 우수한 인식률을 보인다.

  • PDF