• Title/Summary/Keyword: 개미 집단 최적화

Search Result 30, Processing Time 0.026 seconds

An Ant System Extrapolated Genetic Algorithm (개미 알고리즘을 융합한 적응형 유전알고리즘)

  • Kim Joong Hang;Lee Se-Young;Chang Hyeong Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.399-410
    • /
    • 2005
  • This paper Proposes a novel adaptive genetic algorithm (GA) extrapolated by an ant colony optimization. We first prove that the algorithm converges to the unique global optimal solution with probability arbitrarily close to one and then, by experimental studies, show that the algorithm converges faster to the optimal solution than GA with elitism and the population average fitness value also converges to the optimal fitness value. We further discuss controlling the tradeoff of exploration and exploitation by a parameter associated with the proposed algorithm.

A Reinforcement Loaming Method using TD-Error in Ant Colony System (개미 집단 시스템에서 TD-오류를 이용한 강화학습 기법)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.77-82
    • /
    • 2004
  • Reinforcement learning takes reward about selecting action when agent chooses some action and did state transition in Present state. this can be the important subject in reinforcement learning as temporal-credit assignment problems. In this paper, by new meta heuristic method to solve hard combinational optimization problem, examine Ant-Q learning method that is proposed to solve Traveling Salesman Problem (TSP) to approach that is based for population that use positive feedback as well as greedy search. And, suggest Ant-TD reinforcement learning method that apply state transition through diversification strategy to this method and TD-error. We can show through experiments that the reinforcement learning method proposed in this Paper can find out an optimal solution faster than other reinforcement learning method like ACS and Ant-Q learning.

Ant Colony System Considering the Iteration Search Frequency that the Global Optimal Path does not Improved (전역 최적 경로가 향상되지 않는 반복 탐색 횟수를 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Lee, Dae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Ant Colony System is new meta heuristic for hard combinatorial optimization problem. The original ant colony system accomplishes a pheromone updating about only the global optimal path using global updating rule. But, If the global optimal path is not searched until the end condition is satisfied, only pheromone evaporation happens to no matter how a lot of iteration accomplishment. In this paper, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. This method has effectiveness of the search for a path through diversifications is enhanced by decreasing the value of parameter of the state transition rules for the select of next node, and escape from the local optima is possible. Finally, the performance of Best and Average_Best of proposed algorithm outperforms original ACS.

Ant Colony System for solving the traveling Salesman Problem Considering the Overlapping Edge of Global Best Path (순회 외판원 문제를 풀기 위한 전역 최적 경로의 중복 간선을 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the searching method to consider the overlapping edge of the global best path of the previous and the current. This method is that we first determine the overlapping edge of the global best path of the previous and the current will be configured likely the optimal path. And, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath and ACS-Iter algorithms.

A Path Planning of Mobile Agents By Ant Colony Optimization (개미집단 최적화에 의한 이동 에이전트의 경로 계획)

  • Kang, Jin-Shig
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • This paper suggests a Path-planning algorithm for mobile agents. While there are a lot of studies on the path-planning for mobile agents, mathematical modeling of complex environment which constrained by spatio-temporally is very difficult and it is impossible to obtain the optimal solutions. In this paper, an optimal path-planning algorithm based on the graphic technique is presented. The working environment is divided into two areas, the one is free movable area and the other is not permissible area in which there exist obstacles and spatio-temporally constrained, and an optimal solution is obtained by using a new algorithm which is based on the well known ACO algorithm.

A Study of Ant Colony System Design for Multicast Routing (멀티캐스트 라우팅을 위한 Ant Colony System 설계에 대한 연구)

  • Lee, Sung-Geun;Han, Chi-Geun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.369-374
    • /
    • 2003
  • Ant Algorithm is used to find the solution of Combinatorial Optimization Problems. Real ants are capable of finding the shortest path from a food source to their nest without using visual informations. This behavior of real ants has inspired ant algorithm. There are various versions of Ant Algorithm. Ant Colony System (ACS) is introduced lately. ACS is applied to the Traveling Salesman Problem (TSP) for verifying the availability of ACS and evaluating the performance of ACS. ACS find a good solution for TSP When ACS is applied to different Combinatorial Optimization Problems, ACS uses the same parameters and strategies that were used for TSP. In this paper, ACS is applied to the Multicast Routing Problem. This Problem is to find the paths from a source to all destination nodes. This definition differs from that of TSP and differs from finding paths which are the shortest paths from source node to each destination nodes. We introduce parameters and strategies of ACS for Multicasting Routing Problem.

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Task Sequence Optimization for 6-DOF Manipulator in Press Forming Process (프레스 공정에서 6자유도 로봇의 작업 시퀀스 최적화)

  • Yoon, Hyun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.704-710
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator that is adequate for the narrow workspace of press forming processes. This paper addresses the task sequence optimization methods for the manipulator to minimize the task-finishing time. First, a kinematic model of the manipulator is presented, and the anticipated times for moving among the task locations are computed. Then, a mathematical model of the task sequence optimization problem is presented, followed by a comparison of three meta-heuristic methods to solve the optimization problem: an ant colony system, simulated annealing, and a genetic algorithm. The simulation shows that the genetic algorithm is robust to the parameter settings and has the best performance in both minimizing the task-finishing time and the computing time compared to the other methods. Finally, the algorithms were implemented and validated through a simulation using Mathworks' Matlab and Coppelia Robotics' V-REP (virtual robot experimentation platform).

A Study on Product Move Operation Optimal Path Based on Business Supporting System & Spatial Information (업무지원 시스템 및 공간정보 기반의 제품 이동 작업 경로 최적화 기법 연구)

  • Sung-il Park;Ik-Soo choi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.555-556
    • /
    • 2023
  • 본 논문에서는 제조/물류 기업 등 제품(물품) 이동 작업 시 효율적인 경로 제공을 위한 경로 최적화 기법을 제안한다. 이 기법은 업무지원 시스템(MES, ERP, WMS 등)이 구축되어있는 기업을 대상으로 공간정보와 업무지원 시스템에 저장되는 제품 데이터를 기준 정보로 하며, 다익스트라(Dijkstra), 개미 집단 알고리즘(Ant Colony Algorithm, ACO)등 경로 탐색 알고리즘을 적용하여 문제를 해결하고자 한다. 공간정보는 공장(현장)의 레이아웃(Layout)과 제품이 적재/출하되는 렉(Rack) 등의 위치 정보가 포함되고, 업무지원 시스템에서 제품의 현재 위치, 공정 상태, 등록 시간, 제품 크기 등을 사용한다. 제안하는 기법은 상기 기준 정보를 경로 탐색 알고리즘에 적용하여 적재/출하, 공정 이동, 보관 장소 변경 등 제품의 위치가 변경되는 경우에 경로를 최적화할 수 있는 기법을 제안한다. 제품 이동 작업은 대부분 노동력에 의존하는 작업으로 경로 최적화 기법을 제안함으로써, 인력 비용 감소와 향후 로봇 기반의 제품 이동 작업에도 적용하여 자동화된 작업효과를 가져다 줄 것으로 기대한다.

  • PDF

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks (무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘)

  • Kang, Seung-Ho;Choi, Myeong-Soo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.346-353
    • /
    • 2011
  • Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.