• Title/Summary/Keyword: 개량댑

Search Result 2, Processing Time 0.016 seconds

Continuity for Double Tee Slabs (더블티 슬래브의 연속화)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • The main objective of this study is to develop a continuity of double tee slab with two modified dap-ends to solve the problems of excessive moment, slab depth, deflection, and joint cracking in the original simply supported double tee slab systems. The modified joint is produced in a combination with two slabs with modified dap and one rectangular beam. The modified joint can be justified as following different merits. The span capacity for a design load is increased, while the deflection of the slab is decreased due to the decrease of positive moment at the center span of the slab. The joint cracking between slab and beam, which occur frequently in the original slab systems of double tee will be reduced. No more additional form work is needed to cast topping concrete for continuity. Three point loading tests are performed on the specimens with a variable of an amount of main longitudinal reinforcement to evaluate flexural and shear behavior. Following conclusions are obtained from the experimental investigation. The continuity of double tee slab effectively is provided by placing longitudinal steel reinforcement in the topping concrete over the connection, and generally leads to an increase in span capacity of double tee slabs with reduced deflection. It is more effective to control the initial cracking at the connection than that of some simply supported double tee slab systems.

Suggestion, Design, and Evaluation of a New Modified Double Tee Slabs (새로운 개량 더블티 슬래브의 제안, 설계 및 평가)

  • Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.809-820
    • /
    • 2008
  • A new modified full scale double tee slabs with the length of nib plate - 1,500 mm were suggested, designed, and experimentally evaluated up to the loading of flexural failure. This slabs were composed of the tee section which was same to original PCI double tee and the plate section which was modified in a new shape, and the prestressing force was applied at the bottom of tee section only. This specimens were made from the domestic precast factory. The safety and serviceability of the modified nib plate with the dapped ends were evaluated up to the ultimate flexural strength of tee section. As the experimental loading increased, the flexural crackings developed first in the bottom of the slab and they changed to the increased flexural shear and inclined shear crackings in the nib and dapped portion of the double tees. The suggested modified double tee slabs failed in ductile above the design loading with many evenly distributed flexural crackings. The thickness of nib plate - 250 mm does not show any cracking under the service loading and show several minor flexural cracking up to the ultimate state of tee portion. The proposed specimens were satisfied with the strength and ductility requirements in the design code provisions in the tests. Additional experimental tests are required to reduce the depth and tensile reinforcement of nib plate concrete for the practical use of this system effectively.