• Title/Summary/Keyword: 개량공

Search Result 741, Processing Time 0.048 seconds

A Study on Seepage Cutoff Effect of the Environmentally Friendly SCM (SCM 친환경주입공법에 의한 차수 효과에 관한 연구)

  • Chun, Byung-Sik;Roh, Jong-Ryun;Jooi, Tae-Seong;Do, Jong-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2005
  • Recently, difficulties in soft ground improvement that caused by effectiveness of the ground improvement, the durability and environmentally friendliness of the injection material come to the fore. This paper studies the field applicability of the SCM in reinforcement and seepage cutoff of the back of an existing continuous wall. SCM uses double rod which imposes heavy pressure($10-100kgf/cm^2$) to disturbed, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Unconfined compression test and fish poison tests are performed. Test results indicate that the method results in higher durability, less leaching through use of the environmentally friendly injection material, and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.

  • PDF

Stability Analysis of DCM treated Ground Using Centrifuge Test (원심모형시험을 이용한 DCM 처리지반의 안정성 평가)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.105-110
    • /
    • 2011
  • Recently, a deep mixture method as a soil improvement method of marine soft ground, which causes less noise and vibration than other methods, are widely used. In this study, for DCM(Deep Cement Mixing) method, one of the deep mixture method, optimum mixing ratio of clay-cement was suggested using uniaxial compression tests on specimens with various mixing ratio of claycement. In addition, the stability of a caisson on tangent circle-type and wall-type DCM treated ground was evaluated using centrifuge tests. As a result, optimum mixing ratio of clay-cement was 28.5% and the stability of the caisson on DCM treated ground was confirmed. However, the lateral displacement of the caisson on the wall-type DCM treated ground was 7% less and the settlement of that was 39% less than the case of the tangent-circle-type DCM method.

Effects of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer (다당류 친환경 지반개량재를 이용한 지반강도 증대 효과)

  • Kim, Suntae;Do, Jongnam;Jo, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.13-21
    • /
    • 2011
  • To recover basic functions of river such as water control, irrigation, environment, culture, a national river improvement project, the four river restoration projects were currently planned and under construction in Korea. This project is designed to preserve cultural assets and ecosystem from flooding, for that reason, environmentally friendly materials of construction are strongly emphasized. In this study, the soil and cement admixtures are developed. And, the compaction test and the unconfined compressive strength test to evaluate applicability of probiotics as environmentally friendly materials are conducted the soil and cement admixtures. As a result, the probiotic culture was not active in completely dried specimen to obtain accurate mixing proportion. It indicates that the probiotics cannot influence on the development the soil and cement admixtures. A further research will focus on the effect of response between polysaccharide environmentally friendly soil stabilizer and natural specimen.

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.

Thickening and Dewatering of Municipal Wastewater Sludge : Separate and Combined Treatment of Primary and Secondary Sludge (도시하수슬러지의 농축과 탈수 : 1차와 2차슬러지의 분리 및 혼합처리특성비교)

  • Lee, Jin-Woo;Choi, Hoon-Chang;Choi, Jeong-Dong;Jung, Gyung-Yeung;Jun, Seok-Ju;Kwon, Soo-Yul;Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.93-100
    • /
    • 2005
  • Comparative thickening and dewatering characteristics of municipal wastewater sludge were investigated in terms of separated and combined treatment of primary and secondary BNR sludge. Also, various conditioning methods such as cation polymer addition, steam and ultrasonication treatment were examined to improve dewaterability of sludge. The dewaterability was measured by using specific resistant test, wedge zone simulator and centrifuge. The result of the sludge thickening test revealed that separated thickening was better in terms of solids recovery and supernatant quality. Particularly, the thickening of primary sludge with high solids (about 3.5% TS) showed very poor solid separation. The addition of cation polymer showed better conditioning characteristic for dewatering and the optimal polymer dosage was 0.26% for primary sludge, 0.43% for secondary sludge and 0.38% for combined sludge. Contrary to the result of the thickening, the dewatering test revealed that dewatering of the combined sludge is better than that of separated sludge, representing better solids separation and filtrate quality. The polymer addition was essential to improve dewaterability in filter (belt) press type dewatering but it was inefficient for the dewatering of secondary sludge only. The centrifuge type dewatering showed better performance and the dewaterability was slightly improved when the polymer was added. Based on the results of this research a sustainable sludge treatment process, particularly in terms of the recycle water quality and solids recovery, was proposed.

Analysis of Physical and Chemical Properties of CFBC Fly Ash in Vietnam for Solidification (고화재 활용을 위한 베트남 CFBC 플라이애시의 물리적·화학적 특성 분석)

  • Min, Kyongnam;Lee, Jaewon;Lee, Dongwon;Kim, Jinhee;Jung, Chanmuk
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.245-253
    • /
    • 2017
  • Vietnam CFBC fly ash has high CaO content and can be used as a solidification agent for soft ground improvement. However, most fly ash is treated as landfill or waste. In order to utilize fly ash as a solidification agent for soil improvement, the characteristics of fly ash must be accurately determined. In this study, laboratory tests were conducted on fly ash from four CFBC power plants to evaluate the utility of Vietnam fly ash as a solidification agent. As a result of analyzing the physical properties, it was analyzed that all four samples were suitable as material for solidification agent and have suitable particle size for the improvement of soft ground. As a result of analysis of chemical characteristics, it was analyzed that the fly ash of one place could be used as a solidification agent because of the high content of free-CaO. The remaining three fly ash was not suitable for use as a solidification agent due to low Free-CaO content. However, it has a chemical composition similar to that of general fly ash in Korea, so it can be recycled in various ways.

Recycle Possibility of the Stone-Dust in Quarry as Subbase Layer Materials of the Road (도로 보조기층재로서 채석장 석분토의 재활용가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.279-287
    • /
    • 2007
  • An ore of stone obtained from quarry lose its about 60% such as the muck and the stone-dust during the process of making the architectural block, the crushed aggregate and so on. A part of the muck is only reutilized for the crushed aggregate as road pavement materials, while the most of the muck in the shape of powder is mixed with water and then it is deposited in a sludge tank. The muck in the shape of powder is called the stone-dust. If the stone-dust is discharged and sprayed, an ecosystem will have terrible damage because the seepage of surface water, the flow of ground water and the movement of air are not occurred smoothly by packing the void of soils. As the Waste Management Law (2003) in Korea, the stone-dust is sorted out the industrial waste and the most of that is dumped in ground. Therefore, the establishments of an efficient recycling plan are necessary through the improvement of engineering properties of the stone-dust. To investigate the possibility of recycle and improvement for the stone-dust, the stone-dust and natural soils are sampled from six quarries in Korea. The various soil tests are performed by use of the mixed soils with the stone-dust content ratio. As the result of various soil tests, the recycle possibility of the stone-dust is analyzed as subbase layer materials of the roads.

Improvement of Shallow Soil Using Electric Heating Equipment (전기가열장치를 이용한 표층지반개량)

  • Park, Min-Cheol;Im, Eun-Sang;Shin, Beck-Chul;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.41-54
    • /
    • 2012
  • This paper is to develop the method of surface soil improvement by electric heating equipment. For this purpose, the electric heating systems were invented to apply to the in-situ soil. Iaboratory tests were done to study the behaviors of sea clays by eletric heating. In lab tests, two different heating temperatures, $70^{\circ}C$ and $110^{\circ}C$, were applied to the saturated clays to examine the relationship between evaporation and compaction. In addition, trafficability was analyzed to the heated by applying cone penetrometer to the heated clays Furthermore, in-situ tests were conducted to analyze the range of soil improvement and strength variations. The temperature changes in field were measured and they were compared with those of the commercial program (Temp/W). Also, the bearing capacities of electrically heated field were tested by PBT (plate bearing test). Several conclusions were derived from the results of the numerical analysis and tests (lab and field). The improvement ranges and strength variations of electrically heated soil depended on the heating temperature and time. If the heating temperature is more than $100^{\circ}C$ evaporating the ground water, the bearing capacity and settlement increased rapidly. The bearing capacities of in-situ soil increased more than 3 times, and heated soil emitted a lot of vapors. The soil around electric heater was sintered completely, and its range was almost 20 cm.

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.