• Title/Summary/Keyword: 개념적 강우유출모형

Search Result 114, Processing Time 0.029 seconds

Runoff Analysis on the Physically-Based Conceptual Time-Continuous Runoff Model (물리적.개념적 연속 유출모형에 의한 유출해석)

  • 배덕효;조원철
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.193-202
    • /
    • 1995
  • The subjective research attempts to apply a rainfall-runoff model capable of considering time-variation of soil water contents which are highly correlated to the river flows on the qpqyungchang river basin and to evaluate its performance for flow forecasting. The model used in this study is a physically-based conceptual time-continuous model, which is composed of the Sacramento soil moisture accounting model and the nonlinear multiple conceptual reservoirs model. The daily precipitation and evaporation data for 7 years and for 3 years were used for the parameter estimation and the model verification, respectively. As a result, the flows including a significant flood event were well simulated, and the cross-correlation coefficient between observed flows and computed flows for the verification periods was 0.87, but in general computed flows were underestimated for the low-flow periods. Also, the effects of precipitation and soil water content to the river flows were analysed for the flood and the drought.

  • PDF

Simulation of soil moisture on Youngdam Dam basin using K-DRUM (K-DRUM 모형을 이용한 용담댐 유역의 토양수분 변화 모의)

  • Hur, Young Teck;Lim, Kwang Suop;Park, Jin Hyeog;Park, Gu Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.281-281
    • /
    • 2016
  • 기후변화로 인한 기상학적 자연재해로부터 대비하고 안정적인 용수공급을 위해 유역의 다양한 수문 요소들에 대한 분석 필요성이 증가하고 있다. 계절적 강수량의 편차가 큰 우리나라는 유역 통합 물관리가 중요하며, 효율적 수자원 관리와 물안보 확보를 위해 유역내 물순환을 이해하는 것이 중요하다. 유역의 유출을 결정하는 요소들에는 강우, 증발산량, 토양 수분 및 지하수 등이 있으며, 시간적으로는 홍수와 같이 단기에 발생하는 유출과 장기적으로 발생하는 유출이 있다. 장기 유출은 단기 유출에 비해 토양내 수분량이 무시할 수 없을 정도로 영향을 미치게 되므로, 1년 이상의 장기 유출 해석을 위해서는 강우가 발생하지 않는 기간 동안의 토양 수분량 변화와 증발산 영향을 고려할 필요가 있다. K-water에서 자체 개발된 분포형 장단기유출 모델인 K-DRUM은 유역을 격자(grid)단위로 구분하고 각 셀들에 대한 매개변수는 흐름방향도, 표고분포도, 토지이용도, 토지피복도 등을 GIS처리하여 일괄 입력할 수 있도록 함으로써 매개변수 산정과정에서 문제가 되는 경험적인 요인을 제거하였다. 흐름의 구분은 얕은면 흐름, 지표하 흐름, 지하수 흐름으로 구분하여 운동파법과 선형저류법을 적용하였다. 또한 초기 토양함수 자동보정기법으로 실제의 기저유출량을 재현하여 전체적인 유출모의 정확도를 높였으며, FAO-56 Penman-Monteith법을 적용한 증발산량 산정모듈과 Sugawara et al.(1984)이 제안한 개념적 융설 및 적설모듈을 추가하였다. K-DRUM모형을 이용한 유출분석은 용담댐 시험유역을 대상으로 2013년도 1년간의 유출모의를 수행하였다. 입력자료는 용담댐 유역의 지형, 토양 및 토지특성 정보와 시단위 강우 및 기상정보(온도, 바람, 일사 등)를 활용하였다. 분석 결과, 총 관측유출량은 7,151 ㎥/s이고 총 계산유출량 $8,257m^3/s$이며, 관측유출량 대비 계산유출량은 약 115% 정도로 나타났다. 연간 총 강우량은 1303.5 mm로 유역면적 약 $930km^2$을 적용하여 유역 총 강우량을 산정하면 $14,030m^3/s$로서 관측유출량은 유역 총 강우량 대비 51%이고 계산유출량은 59% 정도로 나타났다. 즉 유역 유출율은 약 51% 수준으로 보통의 유역과 유사한 수준이다. 관측된 토양수분량과 K-DRUM 모형의 계산된 토양수분량을 비교하기 위하여 관측 토양수분량의 비율을 이용하여 비교하였다. 모의결과 토양수분은 강우에 의해 변화하며, 관측결과와 유사한 형태로 나타남을 알 수 있었다.

  • PDF

Combining SWAT model with artificial neural networks for modelling a daily discharge (일 유출량 해석을 위한 SWAT 모형과 인공신경망의 연계)

  • Lee, Do-Hun;Kim, Nam-Won;Jung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-195
    • /
    • 2012
  • 인공신경망 모형은 복잡하고 비선형의 입력과 출력 관계를 잘 반영할 수 있어서 유출 모델링에 널리 적용되어 왔다. 그러나 인공신경망 모형은 강우나 유역특성의 공간적 분포를 반영하는 것이 어려우며 물리적 개념이 결여되어 있는 단점이 있다. 본 연구에서는 유역특성과 물리적 개념을 반영할 수 있는 물리기반 모형과 인공신경망 모형의 장점들을 조합하여 물리기반 모형의 일 유출량 해석 능력을 향상하기 위하여 SWAT 모형과 인공신경망(ANN)을 연계하였다. SWAT-ANN 연계모형은 두 단계로 구성되어 진다. 첫 번째 단계에서는 관측 자료를 이용하여 SWAT 모형을 보정한다. 두 번째 단계에서는 첫 번째 단계에서 계산한 소유역별 SWAT 모형의 유출결과를 ANN의 입력자료로 이용하여 SWAT-ANN 연계모형을 구축한다. SCE-UA 최적화 방법을 적용하여 SWAT 모형의 매개변수들을 보정하였고, ANN 학습은 3층의 feed-forward 역전파 알고리즘에 기초한 Bayesian Regularization 방법을 적용하였다. ANN 은닉층의 뉴런 및 전달함수는 시행착오를 통하여 적절한 ANN 구조를 설정하여 SWAT-ANN 연계모형의 일유출량을 모의하였다. 여러 가지 통계적 오차기준을 이용하여 보청천 유역에서 SWAT-ANN 연계모형의 결과와 SWAT 단독 모형의 결과를 비교하였다. SWAT-ANN 연계모형이 SWAT 단독 모형보다 더 우수한 결과를 나타내어 일 유출량 해석을 위한 SWAT-ANN 연계모형의 유용성을 확인할 수 있었다.

  • PDF

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF

The Estimation of Annual Runoff using Rainfall-Runoff Model in Korea (강우-유출 모형에 의한 전국 연평균유출량 산정)

  • Kang, Shin-Uk;Lee, Gwang-Man;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.610-613
    • /
    • 2005
  • 국가 수자원계획을 위해 필요한 방대한 자료 중 하나인 강수에 의한 각 유역별 유출량 산정은 매우 중요한 요소이다. 과거 수자원계획에서는 비유량법을 사용하여 각 유역의 유출량을 산정하여 왔다. 하지만 갈수기, 홍수기에 많은 불확실성이 내재되어 있음이 많은 연구에 의해 보고되어지고 있다. 본 연구에서는 표준 4단 탱크모형의 이후에 만들어진 토양수분 저류구조를 가진 탱크모형을 사용하고 개념적 융설모형을 사용하여 전국의 자연 유출량을 산정하고자 한다. 연구에 사용한 소유역단위는 수자원단위지도의 중권역 117개이다. 매개변수의 추정에 사용된 지점은 다목적댐, 용수전용댐, 신뢰성 있는 수위관측소 상류유역 등 총 24개 지점이며, 매개변수 추정에 사용한 최적화 방법은 신뢰성이 검증된 SCE-UA 전역최적화 방법을 사용하였다. 이와 같이 추정된 매개변수를 사용하여 각 권역별 연평균 유출량을 제시하였다.

  • PDF

Applying regional regression analysis of the hydrologic model parameters for assessing climate change impacts in the ungaged watershed (미계측 유역의 기후변화 영향평가를 위한 수문모형 매개변수의 지역회귀분석 적용)

  • Kim, Youngil;Seo, Seung Beom;Kim, Sung Jin;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.219-219
    • /
    • 2017
  • 상대적으로 유역의 관측 자료가 충분하지 못하거나 검증되지 않았을 경우 미계측 유역으로 정의되며 수문모형의 매개변수 검정을 할 수 없으므로 다른 방법을 고안해야 한다. 이를 위해 기존 연구에서는 지역적 특성을 고려한 지역회기분석을 통해 미계측 유역의 유량을 산정하였는데, 대부분 유역의 특성과 연 평균 유출량 자료의 관계를 이용한 회귀식으로 실시간 유량의 변화를 고려하기 어려웠다. 본 연구에서는 개념적 강우-유출모형으로 많이 사용되고 있는 개념적 수문모형인 GR4J의 매개변수에 대해 미계측 유역의 특성을 고려한 변수들을 이용하여 회귀식을 구하고 그 적용성을 평가하였다. 이를 통해 미계측 유역의 유량 시계열 자료를 생성할 수 있었다. 또한 IPCC에서 발간한 AR5의 RCP 4.5 시나리오를 적용하여 미래 유출량을 산정하였다. 우선 지역회귀분석을 적용하기 위해 수문모형을 이용한 계측 유역의 유출량을 구하였으며 22개의 전국 댐 상류 지점을 기준으로 SCE 알고리즘을 이용하여 GR4J의 최적 매개변수를 구하고 각 유역별로 물리적, 지형적, 기상학적 특성을 고려하여 11개의 변수를 선택하였다. 각 변수간 다중공선성(Multicollinearity)를 고려하기 위해 VIF(Variation Inflation Factor) test를 적용하여 최종 7개의 변수를 선정하고 단계별 회귀방법(Stepwise regression)을 이용하여 GR4J의 매개변수별 회귀식을 생성하였다.

  • PDF

Influence of Snow Accumulation and Snowmelt Using NWS-PC Model in Rainfall-runoff Simulation (NWS-PC 모형을 이용한 강우-유출 모의에서 적설 및 융설 영향)

  • Kang, Shin Uk;Rieu, Seung Yup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.1-9
    • /
    • 2008
  • The impact of snow accumulation and snowmelt in rainfall-runoff modelling was analyzed for the Soyanggang dam basin by comparing the measured and simulated discharges simulated by the NWS-PC model. Sugawara's conceptual model was used to simulate the snow accumulation and snowmelt phenomena and NWS-PC model was employed to simulate rainfall-runoff. Parameters in model calibration were estimated by the Multi-step Automated Calibration Scheme and optimized using SCE-UA algorithm in each step. The results of the model calibration and verification show that the model considering snowmelt process is better than the one without consideration of snowmelt under the performance criteria such as RMSE, PBIAS, NSE, and PME. The measured discharge time series has over 60 days of persistence. Correlograms for each simulation showed that the simulated discharge with snowmelt model reproduce the persistence closely to the measured discharge's while the one without snow accumulation and snowmelt model reproduce only 20 days of persistence. The study result indicates that the inclusion of snow accumulation and snowmelt model is important for the accurate simulation of rainfall-runoff phenomena in the Soyanggang dam basin.

A Study of the IHACRES Model's Parameters regionalization for Discharge Computation on Ungaged Catchment (미계측유역의 유출량 산정을 위한 모형의 IHACRES모형의 매개변수 지역화에 관한 연구)

  • Yoo, Chul-Sang;Park, Yong-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1792-1796
    • /
    • 2006
  • 장기간의 유출량 자료 모의를 위해서는 계량적(metric), 개념적(conceptual), 또는 물리적(physical) 모형 등의 강우-유출 모형을 이용하는 것이 일반적이다. 본 연구에서는 남한강상류 유역과 평창강 유역의 13개 수위관측소를 대상으로 하여 IHACRES 모형의 매개변수를 평가하였다. 또한 이들 매개변수를 유역면적, 유로연장, 하천경사, 유역경사 등 유역특성인자들과 회귀분석하여 그 연관성을 확인하여 보았다. 그 결과 IHACRES 모형의 매개변수는 유역의 특성을 잘 반영하고 있음을 확인할 수 있었으며, 이러한 관계를 이용하여 충주댐 유역 내 13개 수위관측소의 수위-유량관계곡선식을 재평가 할 수 있었다.

  • PDF

Evaluation of the Coverage Assessment of Rainfall-Runoff Model for Data Length (데이터 길이에 대한 강우-유출 모델 적용범위 평가)

  • Jeon Seong Jae;Shin Mun Ju;Jung Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.383-383
    • /
    • 2023
  • 오늘날 수문학 분야에서는 유역에 대한 강우-유출 시뮬레이션을 머신 러닝(ML: Machine Learning)을 활용하여 다양한 연구를 실행하고 있다. 본 연구에서는 시간별 강우-유출 예측 모델인 GR4H(Génie Rural à 4 paramètres Horaires)를 사용하여 충주댐 유역을 대상으로 연구를 수행하였다. 유역의 속성에 따라서 모델의 성능이 어떻게 달라지는지 비교하여 특성에 맞는 모델을 알아내고. 또한 이 과정에서 기상 및 유출 데이터의 보정 길이를 가지고 어느 정도의 데이터 기간이 모델에서 좋은 성능을 보이는지 파악하였다. 뿐만 아니라 모델에 필요한 선행기간의 데이터가 있는 경우와 없는 경우를 비교하여 어떠한 차이를 보이는지, 그리고 선행기간은 얼마나 필요한지 연구를 통하여 알아냈다. 본 연구를 통하여 충주댐 유역에 대한 모델의 적용성 및 성능을 파악하고 수문 모형 구축에 제한이 있는 유역에 대해서도 사용이 가능한지 판단한다. 실험 유역의 관측 값을 모델에 입력한 후 각 모델에 해당하는 매개변수의 최적값을 찾아내는 과정을 거쳐 시뮬레이션을실 행했다. 본 연구에서 사용한 강우-유출 모델인 GR4H는 프랑스의 INRAE-Antony(Institut National de la recherche agronomique-Antony)에서 만들어진 airGR의 일종으로, 시간별 강우-유출 예측을 위해 개발된 공정 기반(process-based)의 집중적, 개념적 수문학 모델이다. 4개의 매개변수(parameter)가 있으며 이는 유역의 특정 속성을 나타낸다. GR4H를 시뮬레이션 하는 과정에서 매개변수의 최적화를 위해 적절한 보정 길이를 파악하여야 한다. 이러한 과정은 4년, 5년, 6년 등 1년씩 데이터의 양을 늘려가며 매개변수를 최적화한다. 이 과정에서 기상 및 유출 데이터의 적절한 보정 길이를 찾아낸다. 시뮬레이션을 통해 얻은 데이터를 관측 값과 비교하여 모델의 성능을 평가하고 다른 관측 값을 통해 시뮬레이션을 실행하여 검증을 거친다.

  • PDF

Derivation of Transfer Function Models in each Antecedent Precipitation Index for Real-time Streamflow Forecasting (실시간 유출예측을 위한 선행강우지수별 TF모형의 유도)

  • Nahm, Sun Woo;Park, Sang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 1992
  • Stochastic rainfall-runoff process model which is mainly used in real-time streamflow forecasting is Transfer Function(TF) model that has a simple structure and can be easy to formulate state-space model. However, in order to forecast the streamflow accurately in real-time using the TF model, it is not only necessary to determine accurate structure of the model but also required to reduce forecasting error in early stage. In this study, after introducing 5-day Antecedent Precipitation Index (API5), which represents the initial soil moisture condition of the watershed, by using the threshold concept, the TF models in each API5 are identified by Box-Jenkins method and the results are compared with each other.

  • PDF