Journal of the Korean Society for information Management
/
v.22
no.1
s.55
/
pp.125-144
/
2005
This study uncovered ambiguity and inconsistency of the semantic relationships of the existing thesaurus by analyzing the concept relationships of AGROVOC and proposed the concept relationships of ontology in partially overcoming these limitations. By the results of analyzing the concept relationships, the study proposed conceptual model as most important part of conecept relationships of ontology and semantically developed concept relationship types. These relationships partially can perform inferences and must be useful for information knowledge system based on more exact semantic relationships. Also the study found out new relationship types and they will be useful for extension of the concept relationships of existing thesaurus. And these relationship types showed that they were useful for the existing thesaurus as Legal Thesaurus.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.535-537
/
2005
본 논문에서는 시소러스 상에서 개념간 세분화를 위한 의미적 기준인 개념 패싯 (Conceptual Facet)과 관계 패싯 (Relational Facet) 그룹을 사용하는데, 패싯이란 공통의 특성을 갖는 개념들을 함께 그룹화하고 용어간 관계를 구조화하기 위한 장치이다. 개념 패싯은 용어가 갖는 대표적인 의미속성, 범주를 의미하며, 용어 각각을 구별되는 의미장 (Semantic Field)에 분류하도록 한다. 관계 패싯은 상$\cdot$하위 개념 간 의미 관계를 표현한 메타 개념이다. 본 시소러스는 여러 전문가들의 다양한 관점을 반영하도록 설계되었다. 관점이란 주관적이며, 임의적이어서 개별 개념에 내재된 자질 또는 속성과는 구별되는 독립적 속성이다. 개념 패싯, 관계 패싯의 도입은 계층 관계, 동등 관계, 범주 관계 등과 더불어 용어 간 관계를 보다 구체적으로 명시함으로써 최종 사용자에게 검색의 효율성과 정확성을 제공할 수 있다.
The ontology was proposed to construct the logical basis of semantic web. Ontology represents domain knowledge in the formal form and it enables that machine understand domain knowledge and provide appropriate intelligent service for user request. However, the construction and the maintenance of ontology requires large amount of cost and human efforts. This paper proposes an automatic ontology construction method for defining relation between concepts in the documents. The Proposed method works as following steps. First we find concept pairs which compose association rule based on the concepts in domain specific documents. Next, we find pattern that describes the relation between concepts by clustering the context between two concepts composing association rule. Last, find generalized pattern name by clustering the clustered patterns. To verify the proposed method, we extract relation between concepts and evaluate the result using documents set provide by TREC(Text Retrieval Conference). The result shows that proposed method cant provide useful information that describes relation between concepts.
Kim, Myoung-Cheol;Lee, Woon-Jae;Choi, Key-Sun;Kim, Gil-Chang
Annual Conference on Human and Language Technology
/
1992.10a
/
pp.39-49
/
1992
시소러스를 작성하기 위해 시소러스 작성자가 고려래야 하는 문제는 단어간의 개념 관계이다. 단어간의 관개는 계층구조에 정의된 개념을 기반으로 분석하여 하향식으로 시소러스를 작성하는 것이 일반적이다. 이러한 방식은 작성자에 의존적이므로 시소러스의 정확도를 보장할 수 없고 주관적인 성향을 가진다. 그래서 Corpus에서 자동으로 개념 및 개념 관계를 추출하는 상향식 방법들이 다양하게 시도되고 있다. 본 논문에서는 시소러스 작성을 위한 자동 개념 획득 도구를 설계, 구현하였다. Mutual Information이라는 방법을 이용하여 공기 정보(Collocation)를 정량화하고 이를 통하여 단어간의 개념관계의 크기를 측정한 후 개념 관계의 크기(MI 값)가 큰 값을 선택하여 개념 화일을 작성한다. 실험 결과로 얻은 개념 화일은 두 개념간의 밀접도를 나타내므로 시소러스 작성에 매우 유용하다.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.305-309
/
2008
기존의 온톨로지 구축에 관한 연구들을 살펴보면 개념의 상 하위 관계와 관련한 연구 또는 기구축된 도메인에 특화된 지식베이스에 기반한 도메인 온톨로지 구축 연구가 주를 이룬다. 그러나 개념과 개념간의 관계는 상 하위 구조와 같은 단순한 계층적 구조로는 그 다양한 특성을 표현할 수 없으며, 도메인 온톨로지를 구축하는 경우에 기구축된 데이터베이스와 같은 개념간 관계가 잘 정의된 데이터는 반드시 필요하였다. 예를 들면, 다양한 지식이 구축되어 있는 데이터베이스나 특정 도메인에 관한 전문 사이트(예 : 의학정보, 약학정보 사이트) 등이 있어야 개념간의 다양한 관계가 표현되어 있는 온톨로지를 구축할 수 있었다. 본 연구에서는 도메인 온톨로지를 구축함에 있어서 이러한 제약을 극복하기 위하여 도메인에 특화된 문서들을 웹 검색을 통하여 수집하였고, 수집된 문서 데이터를 이용하여 자동으로 도메인에 특화된 개념들을 추출하고 이들 개념들을 클러스터링함으로써 개념들간의 다양한 관계를 표현할 수 있는 도메인 온톨로지의 자동 구축 가능성을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.84-86
/
2000
연관 규칙 마이닝 과정에 참조되는 일반 개념 계층은 개념간의 명확한 관계만을 표현한다. 실제로는 개념 사이의 관계가 애매한 경우가 많다. 이 논문에서는 개념간의 애매한 관계까지 반영할 수 있는 퍼지 개념 계층을 이용하여 일반화된 연관 규칙을 마이닝하는 방법을 제안한다. 퍼지 개념 계층에서의 하위 개념을 상위 개념으로 적절하게 반영하는 방법과 마이닝된 연관 규칙에서 중복되는 규칙의 가지치기(pruning)에 사용되는 측도를 소개한다. 또한 퍼지 개념 계층을 이용한 일반화된 연관 규칙 마이닝 방법의 응용성을 보이기 위해 실험 과정과 결과를 보인다.
Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.
본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.
Communications of the Korean Institute of Information Scientists and Engineers
/
v.24
no.4
s.203
/
pp.24-30
/
2006
온톨로지의 기본개념, 응용 분야 및 학습 단계에 대하여 간단하게 설명하였고, 온톨로지 학습단계에서 전문 분야의 개념간 계층 관계 학습 방법에 대하여 자세하게 알아보았다. 전문분야 개념을 표현하는 전문 용어 사이의 계층 관계를 학습하는 방법은 크게 규칙 기반 방법, 통계 기반 방법 그리고 용어의 전문성과 유사도를 이용하는 방법으로 나눌 수 있다. 규칙 기반 방법은 비교적 정확한 결과를 얻을 수 있는 장점이 있지만 재현율이 낮은 단점이 있다. 기존은 통계 기반 방법에서는 재현율이 높은 장점이 있지만 정확률이 낮은 단점이 있다. 또한 이 방법에서는 순수하게 통계 정보만 이용하기 때문에 오류에 대한 분석이 어려운 단점이 있다. 용어의 전문성과 용어간 유사도를 이용한 방법에서는 용어의 전문성을 이용하여 기존의 계층 구조에서 상위에 후보를 선택하고, 용어간 유사도를 이용하여 선택한 후보를 정렬하여 최적의 후보를 찾는다. 이 방법은 상위어 선정 과정을 두 단계로 분리하여 수행하기 때문에 오류 분석이 용이한 장점이 있다. 향후 온톨로지 학습 과정에서 계층 관계뿐 아니라 인과 관계 및 다양한 관계의 학습과 관련된 연구가 진행되어야 한다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.88-90
/
2002
정보를 공유하고 표준화하기 위한 MdR(Metadata Registry)은 데이터요소 개념과 데이터요소로 구성되지만 개념간의 관계를 설정하는 방법을 제시하고 있지 않기 때문에 정보통합시 유연성이 제한된다. 반면, 온톨로지(Ontology)는 도메인에 기반한 개념과 이들 개념간의 관계를 설정할 수 있다 그러나 새로운 개념의 추가에 따른 온톨로지 재구성은 시간이나 비용적으로 많은 오버헤드를 초래한다. 이러한 문제점을 해결하기 위하여, 본 논문에서는 위에서 언급한 MdR과 온톨로지의 특징을 결합하여 새로운 데이터 소스의 추가시 유연한 확장성을 제공하는 에이전트 기반의 3-계층 정보 통합 시스템을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.