본 논문에서는 범용 DSP를 이용한 잡음환경에 강인한 음성인식 시스템을 구현하였다. 구현된 시스템은 TI사의 범용 DSP인 TMS320C32를 이용하였고, 실시간 음성 입력을 위한 음성 Codec과 외부 인터페이스를 확장하여 인식결과를 출력하도록 구성하였다. 또한, 기존의 음성 인식 시스템에 사용한 파라메터에 대한 고찰과 ICA를 이용하여 잡음 환경에 강인한 음성 특징 파라메터를 제안하고 성능 비교 실험을 하였다. 제안된 ICA 파라메터를 적용하여 음성인식 시스템을 구현하였다. 그리고, 독립적으로 동작 가능한 음성인식 시스템의 응용 예로 무선자동차에 적용시켜 실험했다.
실세계 환경의 원거리에서 녹음된 음성은 가산 잡음이나 반향 성분으로 왜곡되기 때문에 음성인식 성능이 현저히 떨어진다. 따라서 음성 전처리 과정은 실세계 환경에서 강인한 음성인식을 위한 필수과정이다. 모델 기반 특징 향상 방법은 전처리 방법 중 하나로 특징 영역 데이터의 적절한 동적 범위(dynamic range)와 차원 수로 인하여 실시간 처리가 가능하고 깨끗한 음성의 선험적 정보를 모델링하기에 용이하다. 또, 인식을 위한 최종 특징 입력에 가까운 단계에서 데이터를 처리하므로 인식에 밀접한 영향을 준다는 장점이 있다. 그러나 대략적인 왜곡 요인 관련 파라미터 추정 때문에 음성인식 성능이 하락되는 단점이 있다. 최근에 기존 모델 기반 특징 향상의 단점을 개선하여 가산 잡음이나 반향 환경에 적합한 방법이 제안되었다. 이글에서는 특징 향상 방법을 소개하고 개선된 방법의 음성인식 강인성을 알아보고자 한다.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.586-591
/
2008
This paper studied the emotion recognition system combined with robust speech recognition system in order to improve the performance of emotion recognition system. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. Final emotion recognition is processed using the input utterance and its emotional model according to the result of speech recognition. In the experiment, robust speech recognition system is HMM based speaker independent word recognizer using RASTA mel-cepstral coefficient and its derivatives and cepstral mean subtraction(CMS) as a signal bias removal. Experimental results showed that emotion recognizer combined with speech recognition system showed better performance than emotion recognizer alone.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.140-144
/
2008
음성 오디오 검색 시스템을 구축하기 위해서는 몇 가지 과정이 필요하다. 첫 번째 과정이 음성 인식기를 이용하여 음성 오디오를 텍스트 형태로 표현하는 것이다. 하지만, 음성 인식기에서 수반되는 음성 인식 오류를 피할 수는 없다. 음성 인식 오류를 최소화하기 위해서 음성 인식 출력의 lattice를 색인(index)해야 하는데, 보다 효과적인 처리를 위하여 압축된 형태를 사용한다. 본 연구에서는 특별히 한국어 강의를 대상으로 검색 시스템을 구축했다. 강의에서는 특별히 관련된 자료를 쉽게 구할 수 있는 데, 이런 자료를 언어 모델에 이용하여 음성 인식 성능을 향상 시킬 수 있다. 또한, 강의 자료를 이용한 추가 색인 테이블(index table)을 생성하여 검색 성능 향상에 도움을 준다. 실험에서 고등학교 과정 수학 강의 동영상을 이용하여 자동화된 강의 검색 시스템을 구축하고, 보조 자료를 이용해 성능을 향상 시키는 것을 보인다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.425-428
/
2008
본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.
최근 음싱인식이 인간과 기계 사이의 자연스러운 통신을 위한 가장 중요한 수단으로 인식되어 이와 관련된 연구가 구준히 이루어져 왔으며, 일부 응용 분야에서는 성공적으로 적용되고 있다. 하지만, 좀 더 다양한 응용분야에 적용하기 위해서는 실제 환경에 존재하는 여러가지 주변잡음에 강인한 특성을 가지는 인식 시스템이 요구된다. 본 연구에서는 음성인식 시스템을 휴대전화에 적용하기 위해 도메인 적응 기법, LDA (Linear Discriminant Analysis) 기법 등을 도입하여 시스템 DB의 크기를 줄이고 잡음에 대한 강인성을 높이고자 하였으며, HMM (Hidden Markov Model)에 기반한 음싱인식 시스템을 사용하여 각 기법의 적용에 따른 인식성능을 평가하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.2
/
pp.115-122
/
2002
This paper proposes a robust speech recognition algorithm based on the wavelet filter banks. Since the proposed algorithm adopts a multiple band decision-making scheme, it performs robustness for noise as the presence of noisy severely degrades the performance of speech recognition system. For evaluating the performance of the proposed scheme, we compared it with the conventional speech recognizer based on the VQ for the 10-isolated korean digits with car noise. Here, the proposed method showed more 9~27% improvement of the recognition rate than the conventional VQ algorithm for the various car noisy environments.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.5
/
pp.683-687
/
2010
This paper studied some methods which use frequency warping method that is the one of the speech transformation method to develope the robust speech recognition system for the emotional variation. For this purpose, the effect of emotional variations on the speech signal were studied using speech database containing various emotions and it is observed that speech spectrum is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, new training method that uses frequency warping in training process is presented to reduce the effect of emotional variation and the speech recognition system based on vocal tract length normalization method is developed to be compared with proposed system. Experimental results from the isolated word recognition using HMM showed that new training method reduced the error rate of the conventional recognition system using speech signal containing various emotions.
This paper presents a robust speech end-point detector using double talk detection in echoic conditioned speech recognition robot. The proposed method consists of combining conventional end-point detector result and double talk detector result. We have tested the proposed method in isolated word recognition system under echoic conditioned environment. As a result, the proposed algorithm shows superior performance of 30 % to the available techniques in the points of speech recognition rates.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.567-569
/
2003
최근 잡음환경에서 강인한 음성인식을 위해 음성 잡음에 영향을 받지 않은 영상정보를 이용한 이중모달 음성인식 연구가 활발히 진행되고 있다. 기존 음성인식기로 좋은 성능을 보이는 HMM은 이질적인 정보를 융합하는데 있어 많은 제약과 어려움을 가지고 있다. 하지만 신경망은 이질적인 정보를 효율적으로 융합할 수 있는 장점을 가지고 있으며 그에 대한 많은 연구가 수행되고 있다. 따라서 본 논문에서는 잡음환경에 강인한 이중모달 음성 인식 모델로 이중모달 신경망(BN-NN)을 제안한다. 이중모달 신경망은 특징융합 방법으로 음성정보와 영상정보를 융합하고 있으며. 입력정보의 특성을 고려하기 위해 윈도우와 중복영역의 개념을 적용하여 시제위치를 고려하도록 설계되어있다. 제안된 모델은 잡음환경에서 음성인식기와 성능을 비교하고, 화자독립 고립단어 인식에서 기존 융합방법인 CHMM과 비교하여 그 가능성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.