• Title/Summary/Keyword: 강인 음성인식

Search Result 234, Processing Time 0.025 seconds

Implementation of Speaker Independent Speech Recognizer in Noise Environment based on DSP (DSP기반의 잡음환경에 강인한 화자 독립 음성 인식기 구현)

  • 박진영;권호민;박정원;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • 본 논문에서는 범용 DSP를 이용한 잡음환경에 강인한 음성인식 시스템을 구현하였다. 구현된 시스템은 TI사의 범용 DSP인 TMS320C32를 이용하였고, 실시간 음성 입력을 위한 음성 Codec과 외부 인터페이스를 확장하여 인식결과를 출력하도록 구성하였다. 또한, 기존의 음성 인식 시스템에 사용한 파라메터에 대한 고찰과 ICA를 이용하여 잡음 환경에 강인한 음성 특징 파라메터를 제안하고 성능 비교 실험을 하였다. 제안된 ICA 파라메터를 적용하여 음성인식 시스템을 구현하였다. 그리고, 독립적으로 동작 가능한 음성인식 시스템의 응용 예로 무선자동차에 적용시켜 실험했다.

  • PDF

가산 잡음 또는 반향 환경에 강인한 음성인식을 위한 은닉 마르코프 모델 기반 특징 향상 방법

  • Jo, Ji-Won;Park, Hyeong-Min
    • Information and Communications Magazine
    • /
    • v.33 no.9
    • /
    • pp.17-23
    • /
    • 2016
  • 실세계 환경의 원거리에서 녹음된 음성은 가산 잡음이나 반향 성분으로 왜곡되기 때문에 음성인식 성능이 현저히 떨어진다. 따라서 음성 전처리 과정은 실세계 환경에서 강인한 음성인식을 위한 필수과정이다. 모델 기반 특징 향상 방법은 전처리 방법 중 하나로 특징 영역 데이터의 적절한 동적 범위(dynamic range)와 차원 수로 인하여 실시간 처리가 가능하고 깨끗한 음성의 선험적 정보를 모델링하기에 용이하다. 또, 인식을 위한 최종 특징 입력에 가까운 단계에서 데이터를 처리하므로 인식에 밀접한 영향을 준다는 장점이 있다. 그러나 대략적인 왜곡 요인 관련 파라미터 추정 때문에 음성인식 성능이 하락되는 단점이 있다. 최근에 기존 모델 기반 특징 향상의 단점을 개선하여 가산 잡음이나 반향 환경에 적합한 방법이 제안되었다. 이글에서는 특징 향상 방법을 소개하고 개선된 방법의 음성인식 강인성을 알아보고자 한다.

Emotion Recognition using Robust Speech Recognition System (강인한 음성 인식 시스템을 사용한 감정 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.586-591
    • /
    • 2008
  • This paper studied the emotion recognition system combined with robust speech recognition system in order to improve the performance of emotion recognition system. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. Final emotion recognition is processed using the input utterance and its emotional model according to the result of speech recognition. In the experiment, robust speech recognition system is HMM based speaker independent word recognizer using RASTA mel-cepstral coefficient and its derivatives and cepstral mean subtraction(CMS) as a signal bias removal. Experimental results showed that emotion recognizer combined with speech recognition system showed better performance than emotion recognizer alone.

A LECTURE SEARCH SYSTEM USING RELEVANT INFORMATION AND SPEECH TRANSCRIPTION (보조 자료와 음성 전사를 사용한 강의 검색 시스템)

  • Lee, Donghyeon;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.140-144
    • /
    • 2008
  • 음성 오디오 검색 시스템을 구축하기 위해서는 몇 가지 과정이 필요하다. 첫 번째 과정이 음성 인식기를 이용하여 음성 오디오를 텍스트 형태로 표현하는 것이다. 하지만, 음성 인식기에서 수반되는 음성 인식 오류를 피할 수는 없다. 음성 인식 오류를 최소화하기 위해서 음성 인식 출력의 lattice를 색인(index)해야 하는데, 보다 효과적인 처리를 위하여 압축된 형태를 사용한다. 본 연구에서는 특별히 한국어 강의를 대상으로 검색 시스템을 구축했다. 강의에서는 특별히 관련된 자료를 쉽게 구할 수 있는 데, 이런 자료를 언어 모델에 이용하여 음성 인식 성능을 향상 시킬 수 있다. 또한, 강의 자료를 이용한 추가 색인 테이블(index table)을 생성하여 검색 성능 향상에 도움을 준다. 실험에서 고등학교 과정 수학 강의 동영상을 이용하여 자동화된 강의 검색 시스템을 구축하고, 보조 자료를 이용해 성능을 향상 시키는 것을 보인다.

  • PDF

Emotion Recognition using Speech Recognition Information (음성 인식 정보를 사용한 감정 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

Robust Speech Recognition for Application to Mobile Phone (휴대폰 단말기에 적용을 위한 강인한 음성인식)

  • 손종목;정성윤;배건성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.495-498
    • /
    • 2001
  • 최근 음싱인식이 인간과 기계 사이의 자연스러운 통신을 위한 가장 중요한 수단으로 인식되어 이와 관련된 연구가 구준히 이루어져 왔으며, 일부 응용 분야에서는 성공적으로 적용되고 있다. 하지만, 좀 더 다양한 응용분야에 적용하기 위해서는 실제 환경에 존재하는 여러가지 주변잡음에 강인한 특성을 가지는 인식 시스템이 요구된다. 본 연구에서는 음성인식 시스템을 휴대전화에 적용하기 위해 도메인 적응 기법, LDA (Linear Discriminant Analysis) 기법 등을 도입하여 시스템 DB의 크기를 줄이고 잡음에 대한 강인성을 높이고자 하였으며, HMM (Hidden Markov Model)에 기반한 음싱인식 시스템을 사용하여 각 기법의 적용에 따른 인식성능을 평가하였다.

  • PDF

Robust Speech Recognition with Car Noise based on the Wavelet Filter Banks (웨이블렛 필터뱅크를 이용한 자동차 소음에 강인한 고립단어 음성인식)

  • Lee, Dae-Jong;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2002
  • This paper proposes a robust speech recognition algorithm based on the wavelet filter banks. Since the proposed algorithm adopts a multiple band decision-making scheme, it performs robustness for noise as the presence of noisy severely degrades the performance of speech recognition system. For evaluating the performance of the proposed scheme, we compared it with the conventional speech recognizer based on the VQ for the 10-isolated korean digits with car noise. Here, the proposed method showed more 9~27% improvement of the recognition rate than the conventional VQ algorithm for the various car noisy environments.

Emotion Robust Speech Recognition using Speech Transformation (음성 변환을 사용한 감정 변화에 강인한 음성 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.683-687
    • /
    • 2010
  • This paper studied some methods which use frequency warping method that is the one of the speech transformation method to develope the robust speech recognition system for the emotional variation. For this purpose, the effect of emotional variations on the speech signal were studied using speech database containing various emotions and it is observed that speech spectrum is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, new training method that uses frequency warping in training process is presented to reduce the effect of emotional variation and the speech recognition system based on vocal tract length normalization method is developed to be compared with proposed system. Experimental results from the isolated word recognition using HMM showed that new training method reduced the error rate of the conventional recognition system using speech signal containing various emotions.

Robust End Point Detection for Robot Speech Recognition Using Double Talk Detection (음성인식 로봇을 위한 동시통화검출 기반의 강인한 음성 끝점 검출)

  • Moon, Sung-Kyu;Park, Jin-Soo;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.161-169
    • /
    • 2012
  • This paper presents a robust speech end-point detector using double talk detection in echoic conditioned speech recognition robot. The proposed method consists of combining conventional end-point detector result and double talk detector result. We have tested the proposed method in isolated word recognition system under echoic conditioned environment. As a result, the proposed algorithm shows superior performance of 30 % to the available techniques in the points of speech recognition rates.

Bimodal Speech Recognition Modeling Using Neural Networks (신경망을 이용한 이중모달 음성 인식 모델링)

  • 류정우;성지애;이순신;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.567-569
    • /
    • 2003
  • 최근 잡음환경에서 강인한 음성인식을 위해 음성 잡음에 영향을 받지 않은 영상정보를 이용한 이중모달 음성인식 연구가 활발히 진행되고 있다. 기존 음성인식기로 좋은 성능을 보이는 HMM은 이질적인 정보를 융합하는데 있어 많은 제약과 어려움을 가지고 있다. 하지만 신경망은 이질적인 정보를 효율적으로 융합할 수 있는 장점을 가지고 있으며 그에 대한 많은 연구가 수행되고 있다. 따라서 본 논문에서는 잡음환경에 강인한 이중모달 음성 인식 모델로 이중모달 신경망(BN-NN)을 제안한다. 이중모달 신경망은 특징융합 방법으로 음성정보와 영상정보를 융합하고 있으며. 입력정보의 특성을 고려하기 위해 윈도우와 중복영역의 개념을 적용하여 시제위치를 고려하도록 설계되어있다. 제안된 모델은 잡음환경에서 음성인식기와 성능을 비교하고, 화자독립 고립단어 인식에서 기존 융합방법인 CHMM과 비교하여 그 가능성을 확인한다.

  • PDF