Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.949-949
/
2012
유출수문곡선은 강우량, 강우강도, 강우지속시간, 강우이동방향 및 이동속도와 같은 강우발생특성과 강수대의 공간적 이류방향과 유역형상과의 상호작용에 의하여 영향을 받으며, 특히 강우의 이류과정에서 나타나는 시간적, 공간적인 분포는 유출에 영향을 미치는 중요한 인자이다. 일반적으로 유출해석 기본이론은 연속방정식과 운동방정식으로서 운동파가정(kinematic wave analogy)을 기반으로 한 집중수문모형(lumped hydrologic model)에 의하여 수행되고 있지만 집중형 모형은 한 매개변수에 여러 가지의 물리적 과정을 개념화하여 담고 있기 때문에 유출과정에 대한 섬세한 모형화의 제약으로 인하여 강우의 이류과정에 따른 유출변화특성을 모의하기가 어렵다. 본 연구에서는 완전 분포형 수문동력학적 강우-유출 모형을 사용하여 강우의 이류특성을 반영할 수 있는 유출 모델을 구성하고, 강우의 이류특성에 따른 유역 출구에서의 유출수문곡선의 변화과정을 살펴보고 상관관계를 분석하였다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.107-107
/
2020
본 연구의 목적은 실제 규모의 초고층 건물을 고려하여 강우-유출 과정을 해석하고, 초고층 건물이 강우-유출 과정에 미치는 영향을 파악하는 것이다. 초고층 건물을 고려하기 위해 건물의 지붕과 벽면을 각각 독립적인 소유역이라 가정하여 분석을 수행하였다. 특히, 건물의 벽면 소유역에는 바람의 영향을 받아 비스듬하게 내리는 강우를 입력자료로 적용하였다. 각 소유역에서 발생하는 유출은 shot noise process 기반 강우 유출-모형으로 모의되었다. Shot noise process 기반 강우-유출 모형을 이용하여 초고층 건물의 벽면과 지붕에서 발생하는 유출을 독립적으로 모의할 수 있었다. 실험실 환경에서 건물 모형이 존재할 때의 강우-유출 과정을 관측하였으며, shot noise process 모형으로 모의한 유출수문곡선과 관측 유출수문곡선이 유사한 특성을 보이는 것을 알 수 있었다. 서울시 강남구에 위치한 실제 규모의 초고층 건물을 고려하여 유출수문곡선을 유도해본 결과, 첨두유출량이 기존 유출수문곡선과 최소 6.5%에서 최대 67.5%까지 차이나는 것으로 확인되었다. 본 연구의 결과는 초고층 건물이 다수 존재하는 도시유역의 강우-유출 해석 결과의 정확성을 향상시킬 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.719-723
/
2008
도달시간이 짧은 중소유역의 홍수예측과 돌발호우에 의한 돌발홍수의 예측을 위해서는 단기 예측 강우를 활용하는 기술이 필수적이라고 할 수 있다. 본 연구에서는 예측 강우를 이용한 신속하고 정확한 유출모의를 수행하는 과정으로서, 수치예보자료와 레이더 강우와 같이 격자 형태로 제공되는 강우자료를 직접 이용하여 유출모의가 가능한 1차원 분포형 강우-유출 모형을 개발하고자 한다. 본 연구에서 개발하고자 하는 모형은 모형의 입출력, 유출분석 모듈 등과 같은 모든 과정을 GIS 시스템과 완전 연계하고자 하며, 이를 통해서 그리드 형태로 제공되는 강우 시계열 자료와 공간자료를 화면상에서 조회할 수 있으며, 이를 모형의 입력자료로 직접 이용하고, 모의결과 또한 유역 내에서 공간 분포된 행태로 제시할 수 있다. 본 논문에서는 이와 같은 모형의 유출해석 과정과 이론적 검증 결과를 개략적으로 소개하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.257-257
/
2011
현업에서 사용하는 유출해석 기본이론은 연속방정식과 운동방정식으로서 운동파가정(kinematic wave analogy)을 기반으로 한 집중수문모형(lumped hydrologic model)에 의하여 수행되고 있지만 집중형 모형은 한 매개변수에 여러 가지의 물리적 과정을 개념화하여 담고 있기 때문에 유출과정에 대한 섬세한 모형화의 제약으로 인하여 유역고유의 매개변수값을 찾기가 쉽지 않은 단점을 가지고 있다. 이에 본 연구에서는 물리적 기반의 2차원 분포형 강우-유출모형을 개발하고자 하며 이는 완전분포형 수문동역학적 모형으로 지표흐름과 침투과정, 기저유출과 관련된 과정을 모의한다. 본 모형은 공간적으로 변화하는 침투량과 소규모 및 대규모의 지형학적 특성을 사용하는 St. Venant 방정식을 사용하고 개발될 모형은 모든 스케일에서의 수심과 유량을 계산할 수 있으며 Richard 방정식(또는 선택적으로 Green-Ampt 방정식 채택)을 이용하여 정밀한 침투량 모의가 가능하다. 또한 레이다등의 고해상도 강우관측자료를 지점자료와 합성하여 입력자료로 사용할 수 있도록하고자 하며 강우-유출모형에 다목적댐이나 보등에서의 유량조절효과를 반영하고, 다목적댐군에서의 연계운영모의가 가능케 함으로서 현업의 운영자들이 실무에서 실질적으로 활용할 수 있는 형태의 모형을 개발하고자 한다. 이는 국내에서의 2차원 분포형 강우-유출모형을 자체 개발함으로서 연구역량을 제고하고, 국내 현업기관에서의 분포형 모형기반의 홍수모니터링 및 전망시스템의 확산에 기여할 것으로 예상된다.
Kim, Yong-Gu;Jin, Young-Hoon;Lee, Han-Min;Park, Sung-Chun
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.301-306
/
2006
본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.502-502
/
2015
현재 기상레이더로부터 제공되고 있는 레이더 자료의 공간해상도는 $1^{\circ}{\times}250m$, 시간해상도는 10 분으로 보통 기상 및 수문분야에서는 10 분 이상의 $1km{\times}1km$의 격자 자료를 활용하고 있다. 그러나 이와 같은 크기의 해상도는 중규모 이상의 유역에서의 강우-유출 해석에 적합할지 모르나 이보다 고해상도의 자료를 요구하는 도시 유역과 같은 소규모 유역에서는 한계점이 있어왔다. 또한 너무 높은 해상도 자료를 강우-유출 과정에 입력하게 되면 레이더 강우 자료에 내포되어 있는 무작위 오차로 인해 강우-유출의 오차가 커지게 된다. 반면 너무 낮은 해상도 자료를 강우유출과정에 입력하게 되면 강우의 공간적인 특성이 평활화되고 이로 인해 레이더 강우 자료는 분포형 강우 자료로써의 기능을 잃게 된다. 이에 적절한 시공간 해상도 결정을 위해 공간 해상도에 따른 도시홍수모형의 입력 자료를 분석하였다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.383-383
/
2023
오늘날 수문학 분야에서는 유역에 대한 강우-유출 시뮬레이션을 머신 러닝(ML: Machine Learning)을 활용하여 다양한 연구를 실행하고 있다. 본 연구에서는 시간별 강우-유출 예측 모델인 GR4H(Génie Rural à 4 paramètres Horaires)를 사용하여 충주댐 유역을 대상으로 연구를 수행하였다. 유역의 속성에 따라서 모델의 성능이 어떻게 달라지는지 비교하여 특성에 맞는 모델을 알아내고. 또한 이 과정에서 기상 및 유출 데이터의 보정 길이를 가지고 어느 정도의 데이터 기간이 모델에서 좋은 성능을 보이는지 파악하였다. 뿐만 아니라 모델에 필요한 선행기간의 데이터가 있는 경우와 없는 경우를 비교하여 어떠한 차이를 보이는지, 그리고 선행기간은 얼마나 필요한지 연구를 통하여 알아냈다. 본 연구를 통하여 충주댐 유역에 대한 모델의 적용성 및 성능을 파악하고 수문 모형 구축에 제한이 있는 유역에 대해서도 사용이 가능한지 판단한다. 실험 유역의 관측 값을 모델에 입력한 후 각 모델에 해당하는 매개변수의 최적값을 찾아내는 과정을 거쳐 시뮬레이션을실 행했다. 본 연구에서 사용한 강우-유출 모델인 GR4H는 프랑스의 INRAE-Antony(Institut National de la recherche agronomique-Antony)에서 만들어진 airGR의 일종으로, 시간별 강우-유출 예측을 위해 개발된 공정 기반(process-based)의 집중적, 개념적 수문학 모델이다. 4개의 매개변수(parameter)가 있으며 이는 유역의 특정 속성을 나타낸다. GR4H를 시뮬레이션 하는 과정에서 매개변수의 최적화를 위해 적절한 보정 길이를 파악하여야 한다. 이러한 과정은 4년, 5년, 6년 등 1년씩 데이터의 양을 늘려가며 매개변수를 최적화한다. 이 과정에서 기상 및 유출 데이터의 적절한 보정 길이를 찾아낸다. 시뮬레이션을 통해 얻은 데이터를 관측 값과 비교하여 모델의 성능을 평가하고 다른 관측 값을 통해 시뮬레이션을 실행하여 검증을 거친다.
Kim, Tae-Jeong;Kim, Ki-Young;Park, Rae-Gun;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.528-528
/
2016
신뢰성 있는 수문순환모의를 위해서 다양한 수문모형이 사용되고 있다. 그 중 대표적인 수문모형인 강우-유출 모형은 유역에 발생한 강우에 반응하는 유출특성을 평가하는데 이용된다. 강우-유출 과정은 강우량, 유출량, 도달시간 및 토양수분 등과 연관된 매개변수들의 최적화 과정을 통해서 추정된다. 하지만 동일한 강우사상이라도 다양한 매개변수들로 인하여 상당히 다른 유출패턴을 나타내기 때문에 수문순환 과정을 정확히 모의하기 위해서 강우-유출 분석시 불확실성 분석이 필수적으로 요구된다. 불확실성 분석은 통계학에서도 쉽지 않은 연구내용으로서 가장 진보된 불확실성 분석기법인 Bayesian 기법은 매개변수의 추정과 불확실성 분석을 동시에 수행할 수 있는 방법으로 매개변수들은 사후분포(posterior distribution)로 귀결되며 최종적으로 확률분포형의 형태를 가진다. 본 연구에서는 국내외적으로 널리 사용되는 단기유출 모형 HEC-1 모형에 Bayesian 기법을 연계하여 대상유역의 도달시간, 저류상수 및 CN No. 최적화 및 불확실성 평가를 수행하였다. 연구결과 Bayesian 기법을 통한 매개변수 최적화 결과는 안정적인 수렴결과를 확인하였으며, 확률강우량을 입력자료로 사용하여 산정된 빈도별 홍수수분곡선의 불확실성 분석을 통하여 향후 수공구조물의 위험도 분석 및 수자원계획 수립시 유용한 자료로 사용될 것으로 판단된다.
Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.70-70
/
2023
강우 발생 중 용담댐 상류로부터 용담댐으로 유입되는 유입량을 정확하게 예측하는 것은 하류 지역의 홍수 피해를 최소화하기 위한 댐의 적절한 운영에 필수적이다. 물리 기반 강우-유출 시뮬레이션 모형은 물리적 과정의 이해를 바탕으로 홍수 예측 분야에 광범위하게 사용되고 있다. 그러나 복잡한 물리 과정을 완벽히 이해하는 것은 거의 불가능하므로 다양한 가정 조건들을 이용해 복잡한 과정을 단순화하여 계산해야 하는 한계가 존재한다. 최근에는 방대한 데이터의 축적과 컴퓨터 능력의 향상으로 인해 데이터 기반 모형이 다양한 실무 문제를 해결하는 데 강력한 도구로 활용되고 있을 뿐 아니라 시뮬레이션 및 예측 등에도 다양하게 이용되고 있다. 그러나 예측 시간이 늘어날수록 입력자료로 이용되는 과거 자료와 출력자료로 이용되는 미래자료와의 상관관계가 줄어들어 모형의 성능이 저하된다. 따라서 본 연구에서는 용담댐의 시간당 유입량을 예측하기 위해 물리 기반 강우-유출 모형과 오차 보정 모형을 결합한 하이브리드 접근 방식을 제안한다. 물리 기반 강우-유출 모형으로는 HEC-HMS 모형을 사용하였으며, 오차 보정 모형에는 기계학습 모형인 인공신경망(Artificial Neural Network, ANN) 모형을 사용하였다. HEC-HMS 모형, ANN 및 하이브리드 모형(HEC-HMS + ANN)의 성능을 비교하기 위해 20 개의 홍수 사상을 모형 구축 및 검증에 사용하였다. 그 결과 하이브리드 모형은 예측 시간이 늘어날수록 HEC-HMS 및 ANN 모형보다 우수한 성능을 나타냈다. 물리모형에 기계학습을 이용한 오차 보정 절차를 통합한 경우 홍수 유출 예측의 정확성이 향상되었다. 다양한 모형의 비교 결과 본 연구에서 적용한 하이브리드 모형이 물리기반 강우-유출 모형 및 순수 기계학습 모형보다 우수한 성능을 보여줌으로써, 하이브리드 모형은 물리모형과 순수 기계학습 모형의 단점들을 보완하는데 이용할 수 있음을 나타낸다. 이 연구의 주요 목적은 강우-유출 시물레이션 모형의 오차 보정 기술에 대한 더 깊은 이해를 제공하는데 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.