• Title/Summary/Keyword: 강우 모델

Search Result 736, Processing Time 0.031 seconds

Rainfall Frequency Analysis Based on the Copula Method (Copula 방법을 통한 강우 빈도 해석)

  • Joo, Kyung-Won;Shin, Ju-Young;Kim, Soo-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.376-380
    • /
    • 2011
  • 강우사상은 강우량, 지속기간, 강우강도 등의 특성으로 표현될 수 있으며 이런 인자들을 같이 고려할수록 그 현상을 보다 종합적으로 표현할 수 있다. 하지만 현재 일반적으로 이루어지는 일변량 빈도해석절차에서는 지속기간을 고정시켜놓고 각 지속시간에 따른 결과만을 도출해 낼 수 있기 때문에 지속기간에 대해 제약적이고 입력자료에 존재하지 않는 지속기간에 대한 결과를 얻기가 어렵다. Copula모델은 두 일변량 분포형을 다변량 분포형으로 연결하여 주는 모델이다. 따라서 강우량과 지속기간을 변수로 사용하면 Copula모델을 통한 이변량 강우빈도해석은 보편적으로 이루어지고 있는 일변량 지점빈도해석보다 지속기간에 대해 유연한 결과를 나타낼 수 있다. 즉, 강우와 지속기간이 동시에 변수로 사용되기 때문에 임의의 지속기간이나 강우에 대해서 확률강우량 및 확률지속기간을 얻을 수 있다. 본 연구에서는 서울지점을 대상으로 1961∼2009년 동안 발생한 강우사상 중 각 년도에서 최대강우량이 발생한 사상을 추출하여 입력자료로 사용하였다. Copula 모형은 Gumbel-Hougaard, Frank, Joe, Clayton, Galambos등 총 5개의 모델을 적용하였고 각 Copula의 매개변수는 준모수방법인 maximum pseudolikelihood estimator를 이용하여 추정하였다.

  • PDF

Analysis of Rain Effect on the Satellite Signal in Changwon-Masan('88~'97) (창원-마산지역에서 위성신호에 대한 강우의 영향 분석 ('88~'97))

  • 하연철;고봉진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.779-785
    • /
    • 1999
  • The satellite signals have attenuation when Satellite path have rain. The signal attenuation by rain is effected over 100Hz and higher frequency signal have very serious attenuation. The rain attenuation is due mostly to rain rate and rain rate data over 10 years need to estimate characteristics of distribution of ram rate. In this paper, We have obtained the rain characteristics from on the recent data(1988-1997) for Changwon-Masan approximated with Moupfouma New Model, and then estimated the rain attenuation using ITU-R, Global and SAM methods, and finally, Effect of rain was analyzed.

  • PDF

A Feasibility Study of a Rainfall Triggeirng Index Model to Warn Landslides in Korea (산사태 경보를 위한 RTI 모델의 적용성 평가)

  • Chae, Byung-Gon;Choi, Junghae;Jeong, Hae Keun
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.235-250
    • /
    • 2016
  • In Korea, 70% of the annual rainfall falls in summer, and the number of days of extreme rainfall (over 200 mm) is increasing over time. Because rainfall is the most important trigger of landslides, it is necessary to decide a rainfall threshold for landslide warning and to develop a landslide warning model. This study selected 12 study areas that contained landslides with exactly known triggering times and locations, and also rainfall data. The feasibility of applying a Rainfall Triggering Index (RTI) to Korea is analyzed, and three RTI models that consider different time units for rainfall intensity are compared. The analyses show that the 60-minute RTI model failed to predict landslides in three of the study areas, while both the 30- and 10-minute RTI models gave successful predictions for all of the study areas. Each RTI model showed different mean response times to landslide warning: 4.04 hours in the 60-minute RTI model, 6.08 hours in the 30-minute RTI model, and 9.15 hours in the 10-minute RTI model. Longer response times to landslides were possible using models that considered rainfall intensity for shorter periods of time. Considering the large variations in rainfall intensity that may occur within short periods in Korea, it is possible to increase the accuracy of prediction, and thereby improve the early warning of landslides, using a RTI model that considers rainfall intensity for periods of less than 1 hour.

Prediction Model of Rain Attenuation for Ka-Band Satellite Link (Ka 대역 위성 신호의 강우 감쇠 예측 모델)

  • 우병훈;최용석;강병수;김내수;강희조
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.640-643
    • /
    • 2002
  • 본 연구에서는 위성통신을 이용한 방송 및 멀티미디어 서비스의 확대를 앞두고 20[GHz] 이상의 높은 주파수 대역의 강우에 의한 전파 손실 예측 모델을 제안하고 강우량에 따른 감쇠 정도를 기존의 모델과 비교 분석하였다. 특히 위성 방송대역으로 이용될 Ka 대역에서 강우 감쇠에 의한 전파 손실을 제시하고 Ka 대역 위성통신 링크 설계를 위한 기본 자료를 제공하고 강우 감쇠 극복 대책을 제시하고자 한다.

  • PDF

Evaluation of the Coverage Assessment of Rainfall-Runoff Model for Data Length (데이터 길이에 대한 강우-유출 모델 적용범위 평가)

  • Jeon Seong Jae;Shin Mun Ju;Jung Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.383-383
    • /
    • 2023
  • 오늘날 수문학 분야에서는 유역에 대한 강우-유출 시뮬레이션을 머신 러닝(ML: Machine Learning)을 활용하여 다양한 연구를 실행하고 있다. 본 연구에서는 시간별 강우-유출 예측 모델인 GR4H(Génie Rural à 4 paramètres Horaires)를 사용하여 충주댐 유역을 대상으로 연구를 수행하였다. 유역의 속성에 따라서 모델의 성능이 어떻게 달라지는지 비교하여 특성에 맞는 모델을 알아내고. 또한 이 과정에서 기상 및 유출 데이터의 보정 길이를 가지고 어느 정도의 데이터 기간이 모델에서 좋은 성능을 보이는지 파악하였다. 뿐만 아니라 모델에 필요한 선행기간의 데이터가 있는 경우와 없는 경우를 비교하여 어떠한 차이를 보이는지, 그리고 선행기간은 얼마나 필요한지 연구를 통하여 알아냈다. 본 연구를 통하여 충주댐 유역에 대한 모델의 적용성 및 성능을 파악하고 수문 모형 구축에 제한이 있는 유역에 대해서도 사용이 가능한지 판단한다. 실험 유역의 관측 값을 모델에 입력한 후 각 모델에 해당하는 매개변수의 최적값을 찾아내는 과정을 거쳐 시뮬레이션을실 행했다. 본 연구에서 사용한 강우-유출 모델인 GR4H는 프랑스의 INRAE-Antony(Institut National de la recherche agronomique-Antony)에서 만들어진 airGR의 일종으로, 시간별 강우-유출 예측을 위해 개발된 공정 기반(process-based)의 집중적, 개념적 수문학 모델이다. 4개의 매개변수(parameter)가 있으며 이는 유역의 특정 속성을 나타낸다. GR4H를 시뮬레이션 하는 과정에서 매개변수의 최적화를 위해 적절한 보정 길이를 파악하여야 한다. 이러한 과정은 4년, 5년, 6년 등 1년씩 데이터의 양을 늘려가며 매개변수를 최적화한다. 이 과정에서 기상 및 유출 데이터의 적절한 보정 길이를 찾아낸다. 시뮬레이션을 통해 얻은 데이터를 관측 값과 비교하여 모델의 성능을 평가하고 다른 관측 값을 통해 시뮬레이션을 실행하여 검증을 거친다.

  • PDF

A Study on Estimation of Quantile using Regional Scaling Model and Frequency Analysis (빈도해석과 지역 스케일 모델을 이용한 확률강우량 추정에 대한 연구)

  • Jung, Younghun;Kim, Sunghun;Kim, Hanbeen;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.301-301
    • /
    • 2016
  • 국내의 경우 수공구조물을 설계하기 위해서는 빈도해석을 통해 설계수문량을 산정한다. 일반적으로 실무에서는 지점빈도해석을 수행하게 되는데 설계빈도보다 대부분 짧은 기간의 자료를 이용하여 산정한다. 지역빈도해석은 이러한 자료기간이 가지는 문제점을 극복하기 위하여 확률수문량의 정확도와 신뢰도를 향상시키는 기법이다. 스케일 모델은 지속기간별로 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 표현이 가능하며, 이를 통해 강우의 IDF곡선을 제시할 수 있는 수학적 모델이다. 대상지역의 강우관측소에서 관측된 강우자료가 일단위이면, 기준지속기간이 24시간이 되며, 기준지속기간에 대한 확률강우량으로부터 임의의 지속기간에 대한 확률강우량을 스케일 모델을 이용하여 추정할 수 있다. 따라서 짧은 자료를 보유한 지역이거나 미계측 지역에 대한 확률강우량을 추정을 위해 지역빈도해석과 지역 스케일 모델을 이용하여 확률강우량을 추정하여 지점빈도해석과 비교하고자 한다. 본 연구를 위해 한강유역의 강우 관측소를 이용하였으며, 군집분석 중 k-means방법을 적용하여 수문학적 동질성을 확보한 후 지역을 구분하였다. 구분된 지역은 지점 및 지역빈도해석을 수행한 후 상대평균제곱근오차(relative root mean square error, RRMSE)를 비교하여 정확도를 판단하였고, 정확도가 높은 빈도해석에 지역 스케일 모델을 적용하여 미계측 지점에 대한 임의의 시간에 대한 확률강우량을 추정하고자 한다.

  • PDF

Improving Accuracy of RDAPS Prediction Precipitation using Artificial Neural Networks (인공신경망을 이용한 RDAPS 강수량 예측 정확도 향상)

  • Shin, Ju-Young;Choi, Gi-An;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1013-1017
    • /
    • 2008
  • 이 연구는 기상수치예보 모델 중 지역수치예보모델인 RDAPS 모델을 이용하여 강우자료를 예측한 값과 실제 강우관측지점에서의 강우량을 비교해 보고 RDAPS 예측량의 정확도를 높이기 위한 연구이다. RDAPS 모델의 자료는 00UTC와 12UTC에 3시간 누적 자료를 48시간에 대해서 생성하고, 30km 격자망에 대한 정보를 담고 있기 때문에 1시간 간격으로 측정된 지점 강우량과의 비교를 위해서는 관측지점과 근거리 정보를 찾고 1시간 간격의 관측 자료를 3시간 누적강우량으로 바꾸는 전처리 과정이 필요하다. 실제 강우예측이 어려움을 겪는 것처럼 RDAPS의 예측 강우량과 관측 강우량은 큰 차이를 보이는 것으로 나타났다. 예측 강우량의 정확도를 높이고자 인공신경망을 적용하였다. 인공신경망이란 뇌기능의 특성 몇가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 강우수치예측 자료 외에도 RDAPS 모델에서 얻을 수 있는 풍향, 풍속, 상대습도, 기압, 온도 등의 다른 수치자료들을 이용하여 인공신경망을 이용하여 자료들의 패턴을 시뮬레이션 하여 정확도가 높은 예측값을 얻을 수 있었다.

  • PDF

The Regional-Scale Weather Model Applications for Hydrological Prediction (수문학적 예측을 위한 지역규모 기상모델의 활용)

  • Jung, Yong;Baek, Jong-Jin;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.936-940
    • /
    • 2012
  • 충분한 선행시간을 확보한 강우의 정확한 예측은 홍수피해를 저감하기 위한 필요한 조건이다. 이를 위해 지역규모의 기상모델인 Advanced Research WRF (ARW)를 적용하여 지역에 맞는 강우 예측에 가장 밀접한 관계를 갖는 물리학적 요소들의 최적화된 조건을 찾아보려 한다. 이를 위해 2006년의 7월의 강우에 대한 분석을 실시하고 생극과 분천의 강우 관측치 와의 비교를 통해 (Root Mean Square Error와 Index of Agreement 활용), ARW의 수문학적 예측을 위한 적용 가능성을 보려 한다.

  • PDF

Flood Discharge Estimation with Consideration of Uncertainty of Rainfall Spatial Distribution (강우공간분포의 불확실성을 고려한 홍수량 추정)

  • Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.294-294
    • /
    • 2012
  • 홍수위험도 추정에 있어서 불확실성은 수리, 수문, 구조, 환경 및 사회경제적인 불확실성과 관련 있으며, 수리 수문학적 불확실성은 주로 수리 수문학적 현상과 그 과정에 대한 불완전한 지식, 그리고 그 과정에 포함된 매개변수들에 대한 불완전한 지식과 관련이 있다. 이러한 여러 가지 불확실성은 홍수위험도 추정에 있어서의 불확실성에 중요한 요인으로 작용하므로 불확실성을 설명하기 위한 통계적 정보는 신뢰성 있는 홍수위험도 추정에 있어서 선행조건이라 할 수 있다. 이러한 불확실성 요인중 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 국내의 수문설계실무에서와 같이 확률홍수량을 강우빈도분석과 강우-유출모델을 이용하여 추정할 경우 확률홍수량 추정에 있어서 확률강우량 및 공간분포에 대한 불확실성과 강우-유출모델에서의 불확실성이 확률홍수량 추정에서의 불확실성에 영향을 미치며, 이후 연피해기대치 추정과 같은 홍수위험도 추정의 불확실성에도 영향을 미치게 된다. 따라서 본 연구에서는 강우공간분포의 불확실성을 고려한 홍수량 추정을 위하여 공간추계모의 기법인 CEM을 적용하여 강우공간분포의 불확실성을 정량화하고 강우-유출모델의 입력 강우량에 대한 확률분포를 추정하였다. 강우-유출해석의 경우 유효우량 및 홍수수문곡선 산정을 위하여 국내 수자원 실무에서 가장 많이 적용되고 있는 NRCS CN 기법, Clark 및 Muskingum 모델을 적용하였다. 이로부터 강우공간분포의 불확실성 추정, 소유역별 입력 강우량에 대한 확률분포의 추정 및 재현기간별 확률홍수량의 불확실성 정량화 방안을 제시하였다. 이러한 결과들은 풍수해저감대책, 유역종합치수대책 등 각종 수자원 계획 및 설계실무에서 확률홍수량 및 홍수 또는 재해위험도 추정의 신뢰성을 향상시킬 수 있는 방법론적 대안으로 활용될 수 있을 것으로 판단된다.

  • PDF

Prediction model of propagation of the millimeter wave wireless transmission channels in the rain environment (밀리미터파 무선전송채널의 강우 전파특성 예측모델 개발)

  • 김영민
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.55-61
    • /
    • 2000
  • The ITU-R model for cross-polarization due to rain is applicable only upto 3.5GHz. The scattering characteristics of rain drops are analyzed by an analytical model. A simple theoretical model for croee-polarization, which is accurate enough in real rainfall environments. is Proposed in this Paper. By comparing this with measurement data and the ITU-R, we have also derived an prediction model for rain cross-polarization applicable upto millimeter wave band.

  • PDF