• Title/Summary/Keyword: 강우자료 보정

Search Result 416, Processing Time 0.032 seconds

Considering of the Rainfall Effect in Missing Traffic Volume Data Imputation Method (누락교통량자료 보정방법에서 강우의 영향 고려)

  • Kim, Min-Heon;Oh, Ju-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Traffic volume data is basic information that is used in a wide variety of fields. Existing missing traffic volume data imputation method did not take the effect on the rainfall. This research analyzed considering of the rainfall effect in missing traffic volume data imputation method. In order to consider the effect of rainfall, established the following assumption. When missing of traffic volume data generated in rainy days it would be more accurate to use only the traffic volume data of the past rainy days. To confirm this assumption, compared for accuracy of imputed results at three kinds of imputation method(Unconditional Mean, Auto Regression, Expectation-Maximization Algorithm). The analysis results, the case on consideration of the rainfall effect was more low error occurred.

Real Time Rainfall Intensity Estimation Using Rainfall Radar and Rain Gauges (강우레이더와 지상우량계 자료를 이용한 실시간 강우강도 추정)

  • Choi, Kyu-Hyun;Kim, Byung-Sik;Jung, Jae-Wook;Hyun, Myung-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1511-1514
    • /
    • 2006
  • 본 연구에서는 현재 건설교통부에서 설치 및 운영 중에 있는 소형강우레이더의 최적화를 위해서 지상의 강우관측소 자료와 레이더 측정 자료의 실시간 보정방법을 이용하여 강우강도를 추정하였다. 본 연구에서 이용된 실시간 Z-R 관계식 적용으로 인한 강우강도 개선 정도를 파악하기 위해서 통상 일률적으로 적용되고 있는 $Z=200R^{1.6}$에 의한 강우강도 결과와 비교.분석하였으며, 지상의 강우관측소 실측 강우량과 비교함으로써 적용성을 보였다. 본 연구에서 이용된 보정방법은 강우보정에 소요되는 시간이 짧아 실시간 적용이 가능하며, 레이더 강우량의 정확한 추정으로 유역에서의 향상된 면적강우량 산출이 가능할 것으로 판단된다.

  • PDF

Utility of Gridded Observations for Statistical Bias-Correction of Climate Model Outputs and its Hydrologic Implication over West Central Florida (기후 모델 결과의 통계적 오차 보정과 수문 모델링 적용을 위한 격자 단위 자료의 유용성 평가)

  • Hwang, Sye-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.91-102
    • /
    • 2012
  • 강우의 관측망 확장과 위성 자료 및 기후 모델을 이용한 격자 단위자료가 개발 및 보급됨에 따라 다양한 자료의 분야별 활용성에 대한 연구의 필요성이 제기되고 있다. 본 연구에서는 지역 기후 모델 산출물의 오차 보정을 위한 격자 관측자료의 활용성을 평가하였다. 또한 통합 분포형 수문모델을 이용하여, 보정한 기후모델 결과의 수문 모의를 위한 기후 입력 자료로써의 적합성을 검토하였다. 보정된 결과는 각 관측자료의 월별 평균 강우량과 공간 분포를 비교적 잘 재현하였다. 한편 연강우량 시계열에 있어 그 양상은 잘 재현된 가운데 보정되지 않은 오차를 일부 포함하는 것으로 나타났다. 이는 점 관측자료로부터 추정된 시험 지역내 172개 소유역에 대한 일평균 강우량 자료와 비교해 볼 때 관측자료의 형식이나 정확성보다 기후모델의 불확실성에 기인하는 것으로 판단된다. 수문 모의 결과, 격자 자료를 이용하여 보정한 강우 입력자료는 수문 모델의 검보정에 이용된 소유역 단위 강우 자료를 이용한 결과에 상응하는 활용성을 보여주었다. 또한 강우의 공간 분포를 고려하지 않고, 시험유역 전체에 대한 평균 강우량을 입력 자료로 이용한 결과를 통해 기후 자료의 공간 분포와 관측 밀도의 중요성을 확인하였다.

Assessment of rainfall-runoff performance using corrected satellite precipitation products by convolutional neural network (합성곱신경망을 이용한 보정 위성강수자료 강우-유출 성능 평가)

  • Young Hun Kim;Le-Xuan Hien;Sung Ho Jung;Gi Ha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.65-65
    • /
    • 2023
  • 최근 기후변화로 인해 홍수, 가뭄 등 수재해가 세계 곳곳에서 빈번하게 발생하고 있다. 이로 인해 정확한 강우-유출 해석의 중요도는 높아지고 있으며 강우-유출 해석에 따라 수자원 관리 및 계획수립의 정도가 달라질 수 있다. 본 연구 대상 지역인 메콩강 유역은 중국과 동남아시아 5개국(라오스, 태국, 미얀마, 베트남, 캄보디아)을 관통하는 국가공유하천으로 기초자료의 획득이 어렵고 국가별로 구축된 자료가 질적, 양적 품질이 상이하여 수문해석에서의 기초자료로 사용하기에 불확실성이 있다. 최근 기술의 발달로 글로벌 격자형 강수자료 획득이 용이함에 있어 미계측 대유역에서의 다양한 연구들이 수행되고 있지만, 지점강수자료와 시·공간적 오차로 인한 불확실성을 내포하고 있다. 이에 본 연구에서는 글로벌 격자형 강수자료의 적용성을 평가하기 위하여 지점 격자형 강수자료(APHRODITE)와 4개의 위성강수자료(CHIRPS, CMORPH, PERSIANN-CDR, TRMM)를 수집하고 합성곱 신경망 모형인 ConvAE 기법을 이용하여 위성강수자료의 시·공간 편의 보정을 수행하였다. 또한, 하천 수위에 대한 장기간 정보 수집이 가능한 메콩강 본류 4개 관측소(Luang Prabang, Pakse, Stung Treng, Kratie)를 선정하였으며 SWAT 모형을 이용하여 매개변수 보정(2004~2013)과 격자형 강수자료의 보정 전·후의 유출모의(2014~2015) 결과를 비교·분석하였다. 격자형 강우를 이용한 보정 및 유출 분석 결과 4개의 위성강수자료 모두 성능이 향상되었으며 그 중 보정된 TRMM이 가장 우수한 성능을 보여 해당 유역에서의 APHRODITE를 대체할 수 있다고 판단하였다. 따라서 본 연구에서 제시하는 ConvAE를 이용한 보정기법과 이를 이용한 강우-유출 해석은 향후 다양한 격자형 강수자료를 활용한 미계측 대유역에서의 수문해석에서 활용이 가능할 것으로 판단된다.

  • PDF

Completion of the Missing Rainfall Data by a Multi-regression method (다중회귀분석을 이용한 강우량 결측치 보정)

  • Lee, Myoung-Woo;Lee, Bong-Hee;Kim, Hung-Soo;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.775-779
    • /
    • 2006
  • 강우자료의 구축은 수문해석에 있어 가장 기본적이며 중요한 단계라 할 수 있다. 하지만 수문 관측 자료의 경우 결측치가 존재하여 그에 대한 보정이 필요한 경우가 종종 발생하게 된다. 따라서 수문자료의 분석을 수행하기에 앞서 우선 자료에 대한 검정을 실시하고, 결측치가 존재할 경우는 이를 보정하여 분석을 수행하여야 한다. 본 연구에서는 다변량통계기법의 하나인 다중회귀분석을 이용하여 강우 결측치를 보정하였다. 본 연구에서는 다중공선성과 자기상관에 대하여 고려한 다중회귀모형을 구성하였다. 모형의 구성시 모든 결측지점에 적용이 가능하지 않아 일반성이 떨어짐을 확인 할 수 있었지만, 모형이 구성될 경우 통계적 적합도와 유의수준을 확인 할 수 있는 장점이 있었으며, 다중회귀모형이 구성되는 경우 좋은 보정 결과를 주는 것을 확인 할 수 있었다.

  • PDF

The Correction of Mean-Field Bias of Rain Radar Rainfall and Estimation of Sampling Error (강우레이더 자료의 편의 보정과 관측오차 산정)

  • Yoo, Chul-Sang;Yoon, Jeong-Soo;Kim, Kyoung-Junn;Choi, Jeong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.32-36
    • /
    • 2009
  • 레이더 강우의 편의 추정은 근본적으로 레이더 강우의 평균과 참값으로 가정되는 우량계 강우의 평균과의 차이를 결정하는 문제이다. 두 관측치의 차이를 정확히 결정하기 위해서는 두 관측치의 차이에 대한 분산이 매우 작아야 하며, 따라서 비교되는 관측치의 수가 충분히 확보되어야 한다. 본 연구에는 임진강 유역에서와 같이 일부 지역에만 우량계의 설치가 가능한 경우를 대상으로 하고자 한다. 임진강 유역에서와 같이 지역적으로 편중된 지상 강우자료를 활용하여 강우레이더 자료의 편의 보정을 통한 품질 향상 방안을 제시하였다. 또한 차폐 등을 이유로 레이더 강우가 대상 유역 또는 소유역을 완전하게 포괄하지 못하는 경우에 대해 가용한 레이더 강우를 이용하여 면적평균강우를 산정하는 경우에 포함될 수 있는 오차의 규모를 추정하였다. 강화 강우레이더의 반경은 한강 유역의 일부를 제외하고 대부분을 덮는다. 이러한 강화 강우 레이더의 한강유역에 대한 수문 적용성을 판단하기 위해 차폐로 인한 관측오차 산정 시 한강유역에도 적용해보았다.

  • PDF

Assessment of applying rainfall forecast correction by using backward tracking method (역추적 기법을 활용한 예측강우 보정기법의 적용 및 평가)

  • Na, Wooyoung;Kang, Minseok;Kim, Gildo;Park, Junpyo;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.98-98
    • /
    • 2018
  • 최근 기후변화로 인해 대류성 집중호우가 빈번하게 발생하고 있으며 이러한 강우 특성은 산지 지역에 위치한 소하천유역에 상당한 피해를 야기한다. 통상 대류성 집중호우는 규모가 작고 속도가 빠르기 때문에 중규모 이상의 유역에서 부분적으로 상이한 강우특성을 보인다. 아울러 이러한 호우 패턴의 변화는 일시적인 현상이 아닌 하나의 기상 특성으로 자리를 잡아가고 있기 때문에 이에 대한 대책마련이 더욱 필요한 실정이다. 초단기예보 모형은 돌발홍수 예경보시스템의 입력 값인 예측강우 자료를 생산한다. 시스템에 입력되는 예측강우 자료는 두 가지의 문제점을 가지게 된다. 첫 번째는 예측강우 자료 자체가 가지는 정확도의 문제이다. 이를 해결하기 위해 우리나라에서는 G/R비 개념을 도입하여 예측강우의 품질을 개선하고 있다. 두 번째 문제는 호우사상의 크기에 대한 것이다. 현재 돌발홍수 예경보시스템의 예측강우 보정기법은 호우의 거동 특성을 고려하지 않으며, 이로 인해 예측강우의 편의보정계수인 G/R비가 적절하지 않게 결정되는 문제가 발생한다. 본 연구에서는 이러한 문제점을 극복하기 위해 현재의 예측강우 보정기법과는 달리 호우의 이동경로를 고려하여 G/R비를 결정하고 이를 예측강우에 적용하는 방법을 제시하였다. 현재 호우가 위치하는 지역에 대해 G/R비를 산정하고 몇 시간 내에 대상지역에 도달하게 될 호우에 대한 예측 강우에 적용하였다. 본 연구에서는 2016년에 발생한 주요 호우사상을 선정하고, 우리나라 전역에 걸쳐 개선된 보정기법 방법론을 적용하였다. 그 결과 현재의 보정방법을 적용하는 경우 비정상적으로 과대하게 보정된 결과를 주는 데 반해, 호우의 이동경로를 고려한 보정방법을 적용한 경우에서는 실제 관측된 강우와 매우 유사한 합리적인 보정치를 제공해 주는 것으로 확인되었다.

  • PDF

Estimation of Precipitation Correction Factor and Flood Runoff Analysis of Urban Stream using Distributed Model and the Radar Image (레이더 영상과 분포형 모형을 활용한 도심하천의 홍수유출해석 및 강우보정계수 산정)

  • Kang, Bo-Seong;Yang, Sung-Kee;Jung, Woo-Yeol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.544-544
    • /
    • 2016
  • 최근 지구온난화 등 기후변화에 따른 돌발 홍수가 계절과 관계없이 빈번하게 발생하고 있으며, 국지성 호우 및 태풍의 영향으로 인한 홍수피해가 매년 발생하고 있다. 이와 같은 피해를 저감하기 위해서는 정확한 강우 관측 및 홍수량 산정이 매우 중요하기 때문에 많은 수문학적 연구와 기술 발달이 이루어지고 있다. 그 중 강우의 변화를 실시간으로 관측 가능한 레이더영상 자료의 활용성이 증대되어 활발한 연구가 진행되고 있으나, 제주도의 경우 다른 지역에 비해 연구가 미흡한 실정이다. 이에 따라, 제주도 유역을 대상으로 유역의 공간적 특성을 격자기반으로 분석하고 매개변수 산정 시 경험적 요인을 제거할 수 있는 분포형 모형인 Vflo와 기상청에서 제공하는 레이더 영상자료 및 강우자료를 활용하여 연구를 수행하였다. 본 연구에서는 Arc-GIS를 이용하여 제주도 도심하천인 외도천 유역의 지형적 지리적 특성(DEM, 토양도, 토지피복도 등)을 $30m{\times}30m$ 격자크기로 분석하고, 레이더영상 자료로부터 강우 자료를 추출하였으며, 분포형 모형(Vflo)을 활용하여 유출량을 모의하였다. FSIV기법을 통해 현장 관측한 유출량과 비교 분석하였으며, 레이더 영상자료로부터 추출한 강우자료는 AWS자료를 활용하여 제주도에 적합한 강우보정계수를 산정하였다. 이와 같은 연구를 통해 향후 제주도 미계측 유역의 홍수량 산정이 가능할 것으로 판단되며, 하천기본계획 및 유역종합치수계획 등 치수계획 수립 시 많은 활용이 될 것으로 기대한다.

  • PDF

Flood Simulation using Vflo and Radar Rainfall Adjustment Data by Statistical Objective Analysis (통계적 객관 분석법에 의한 레이더강우 보정 및 Vflo를 이용한 홍수모의)

  • Noh, Hui Seong;Kang, Na Rae;Kim, Byung Sik;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.243-254
    • /
    • 2012
  • Recently, the use of radar rainfall data that can help tracking of the development and movement of rainfall's spatial distribution is drawing much attention in hydrology. The reliability of existing radar rainfall compared to gauge rainfall data on the ground has not yet been confirmed and so we have difficulties to apply the radar rainfall in hydrology. The radar rainfall for the applications in hydrology are adjusted merging method derived from gage. This study uses the Mean-Field Bias (MFB) and Statistical Objective Analysis (SOA) as correction methods to create adjusted grid-based radar rainfall data which can represent the temporal and spatial distribution of rainfall. This study used a storm event occurred in August 2010 for the adjustment of radar rainfall. In addition, the grid-based distributed rainfall-runoff model (Vflo), which enables more detailed examinations of spatial flux changes in the basin rather than the lumped hydrological models, has been applied to Gamcheon river basin which is a tributary of Nakdong River located in south-eastern part of the Korean peninsular and the basin area is $1005km^2$. The simulated runoff was compared with the observed runoff in an attempt to evaluate the usability of radar rainfall data and the reliability of the correction methods. The error range of peak discharge using each correction method was within 20 percent and the efficiency of the model was between 60 and 80 percent. In particular, the SOA method showed better results than MFB method. Therefore, the SOA method could be used for the adjustment of grid-based radar rainfall and the adjusted radar rainfall can be used as an input data of rainfall-runoff models.

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.