Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.231-235
/
2009
본 연구에서는 홍수예보를 위한 사상형 모형인 저류함수모형 적용시 문제점을 개선하기 위해 기존의 저류함수 모형에 자유수와 장력수의 2개 영역으로 구성된 토양수분모의 컴포넌트를 결합하여 지표유출, 중간유출, 기저유출의 유출수문성분에 대한 연속적인 모의가 가능하도록 하였으며 실시간 홍수예측을 위해 다수의 유량 관측지점과의 실시간 오차 보정이 가능하도록 앙상블 칼만 필터링 기법을 도입하였다. 개발된 모형의 적용성을 평가하기 위해 낙동강 권역을 대상유역으로 선정하였으며 시단위 강우자료, 기상자료, 유량자료를 비롯하여 GIS를 기반의 지형자료를 구축하였다. 연속형 저류함수형의 매개변수 추정결과 주요지점의 관측유량에 대해 높은 적합도를 보였으며 1시간 선행시간의 홍수량 예측결과에서도 높은 정확도를 보이는 것으로 나타났다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.303-303
/
2011
효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.290-290
/
2022
본 연구는 대규모 기후 앙상블 모의 결과를 이용하여 산정된 극한 강우량을 최근 발생한 극한 호우사상의 규모 평가에 적용하는 것을 목적으로 수행되었다. 2018 년 히로시마 호우사상은 지속시간 24 시간에서 재현기간 1,000 년에 상응하는 극한 규모를 나타냈기 때문에 짧은 기간동안 수집된 관측자료만으로 규모를 평가하기 어렵다. 따라서 이를 평가하고자 대규모 기후 앙상블 모의결과 기반의 d4PDF 자료를 이용하였다. 이 자료는 3,000 개의 연 최대 강우자료를 제공하고, 이를 토대로 통계적 모형 및 가정 없이 비모수적으로 10 년부터 1,000 년의 재현기간을 나타내는 지속시간 24 시간의 확률강우량을 산정했다. 산정된 d4PDF 의 확률강우량은 관측강우량의 확률강우량과 비교하였으며, 관측기간에 가까운 50 년의 재현기간에서는 두 확률강우량의 차이가 3.53%였지만 관측기간 (33 년)과 재현기간 (100 년 이상)의 차이가 증가할수록 오차가 10% 이상으로 증가하는 양상을 나타냈다. 이는 장기간 재현기간에서 관측강우량의 확률강우량은 불확실성을 내포하는 것을 의미한다. d4PDF 의 확률강우량에 대해서 2018 년 히로시마 호우사상은 300 년에 가까운 재현기간을 나타냈다. 미래 기후조건에서의 d4PDF 자료를 이용해 확률강우량을산정했으며, 현재 기후조건대비 미래 기후조건에서 10 년부터 1000 년의 재현기간을 나타내는 확률강우량은 모두 20% 이상으로 증가했다. 미래 기후조건의 확률강우량에 대해 2018 년 히로시마 호우사상은 100 년에 가까운 재현기간을 나타냈으며, 이는 미래 기후조건에서 히로시마 호우사상의 발생 확률이 0.33% (현재 기후)에서 1% (미래 기후)로 증가하는 것을 의미한다. 결과적으로, 대규모 기후 앙상블 모의결과 기반의 d4PDF 는 현재 기후조건과 미래 기후조건하에서 극한 규모의 호우사상의 정량적인 평가에 유용하게 활용될 수 있다.
Journal of Satellite, Information and Communications
/
v.12
no.3
/
pp.22-34
/
2017
The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.
The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.
Lee, Myung Jin;Yoo, Young Hun;Chae, Myung Byung;Kim, Hung Soo;Kim, Soo Jun
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.389-389
/
2018
최근 기후변화로 인해 국지성 집중호우, 태풍 등 위험 기상의 발생이 증가하고 있으며, 이로 인한 피해도 증가하고 있다. 현재 홍수로 인한 피해를 저감하기 위해 하천 홍수를 중심으로 50개 지점에 대한 홍수 예 경보의 정보를 제공하고 있으나, 이는 지역별 특성을 고려하지 못하고 있어 홍수 예 경보에 대한 논의가 지속되고 있다. 본 연구에서는 지역특성을 반영한 위기경보단계 기준을 설정하고, 행정구역별 홍수위험 전망 기법을 개발하고자 한다. 대상 지역으로는 낙동강 권역의 해안지역 29개 지자체를 선정하였으며, 과거에 발생한 홍수 피해 이력을 조사하고 피해액과 지속시간별 강우와의 상관분석을 실시하여 해당 지자체의 강우 지속기간을 선정하였다. 그 후 피해현상 및 강우량을 기준으로 x축을 구축하고, 강우 앙상블을 통한 강우 발생 가능성을 기준으로 y축을 구축하여 홍수위험전망 매트릭스를 구축하였다. '관심', '주의', '경계', '심각'으로 4단계를 나누어 홍수위험전망 매트릭스를 구축하였고, 각 단계별 피해현상을 구분하여 제시하였다. 본 연구를 통해 지역별 특성을 고려한 홍수위험전망 매트릭스를 제시함으로써, 위험 기상이 발생하였을 때 지자체별 홍수 예 경보를 발령하여 홍수 피해를 최소화 할 수 있을 것으로 판단된다.
The objective of this study is to develop real-time river flow forecast model by linking continuous rainfall-runoff model with ensemble Kalman filter technique. Andong dam basin is selected as study area and the model performance is evaluated for two periods, 2006. 7.1~8.18 and 2007. 8.1~9.30. The model state variables for data assimilation are defined as soil water content, basin storage and channel storage. This model is designed so as to be updated the state variables using measured inflow data at Andong dam. The analysing result from the behavior of the state variables, predicted state variable as simulated discharge is updated 74% toward measured one. Under the condition of assuming that the forecasted rainfall is equal to the measured one, the model accuracy with and without data assimilation is analyzed. The model performance of the former is better than that of the latter as much as 49.6% and 33.1% for 1 h-lead time during the evaluation period, 2006 and 2007. The real-time river flow forecast model using rainfall-runoff model linking with data assimilation process can show better forecasting result than the existing methods using rainfall-runoff model only in view of the results so far achieved.
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.1
/
pp.165-174
/
2019
As a nonstationarity is observed in hydrological data, various studies on nonstationary frequency analysis for hydraulic structure design have been actively conducted. Although the inherent diversity in the atmosphere-ocean system is known to be related to the nonstationary phenomena, a nonstationary frequency analysis is generally performed based on the linear trend. In this study, a nonstationary frequency analysis was performed using climate indices as covariates to consider the climate variability and the long-term trend of the extreme rainfall. For 11 weather stations where the trend was detected, the long-term trend within the annual maximum rainfall data was extracted using the ensemble empirical mode decomposition. Then the correlation between the extracted data and various climate indices was analyzed. As a result, autumn-averaged AMM, autumn-averaged AMO, and summer-averaged NINO4 in the previous year significantly influenced the long-term trend of the annual maximum rainfall data at almost all stations. The selected seasonal climate indices were applied to the generalized extreme value (GEV) model and the best model was selected using the AIC. Using the model diagnosis for the selected model and the nonstationary GEV model with the linear trend, we identified that the selected model could compensate the underestimation of the rainfall quantiles.
Journal of The Korean Society of Agricultural Engineers
/
v.54
no.4
/
pp.127-135
/
2012
This paper introduced the flow forecast modeling system that a water management agency in west central Florida, Tampa Bay Water has been operated to forecast monthly rainfall and streamflow in the Tampa Bay region, Florida. We evaluated current 1-year monthly rainfall forecasts and flow forecasts and actual observations to investigate the benefits of incorporating rainfall forecasts into monthly flow forecast. Results for rainfall forecasts showed that the observed annual cycle of monthly rainfall was accurately reproduced by the $50^{th}$ percentile of forecasts. While observed monthly rainfall was within the $25^{th}$ and $75^{th}$ percentile of forecasts for most months, several outliers were found during the dry months especially in the dry year of 2007. The flow forecast results for the three streamflow stations (HRD, MB, and BS) indicated that while the 90 % confidence interval mostly covers the observed monthly streamflow, the $50^{th}$ percentile forecast generally overestimated observed streamflow. Especially for HRD station, observed streamflow was reproduced within $5^{th}$ and $25^{th}$ percentile of forecasts while monthly rainfall observations closely followed the $50^{th}$ percentile of rainfall forecasts. This was due to the historical variability at the station was significantly high and it resulted in a wide range of forecasts. Additionally, it was found that the forecasts for each station tend to converge after several months as the influence of the initial condition diminished. The forecast period to converge to simulation bounds was estimated by comparing the forecast results for 2006 and 2007. We found that initial conditions have influence on forecasts during the first 4-6 months, indicating that FMS forecasts should be updated at least every 4-6 months. That is, knowledge of initial condition (i.e., monthly flow observation in the last-recent month) provided no foreknowledge of the flows after 4-6 months of simulation. Based on the experimental flow forecasts using the observed rainfall data, we found that the 90 % confidence interval band for flow predictions was significantly reduced for all stations. This result evidently shows that accurate short-term rainfall forecasts could reduce the range of streamflow forecasts and improve forecast skill compared to employing the stochastic rainfall forecasts. We expect that the framework employed in this study using available observations could be used to investigate the applicability of existing hydrological and water management modeling system for use of stateof-the-art climate forecasts.
This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.