• Title/Summary/Keyword: 강우앙상블

Search Result 87, Processing Time 0.034 seconds

A Study on the Development of the Stochastic Continuous Storage Function Model (추계학적 연속형 저류함수 모형 개발에 관한 연구)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.231-235
    • /
    • 2009
  • 본 연구에서는 홍수예보를 위한 사상형 모형인 저류함수모형 적용시 문제점을 개선하기 위해 기존의 저류함수 모형에 자유수와 장력수의 2개 영역으로 구성된 토양수분모의 컴포넌트를 결합하여 지표유출, 중간유출, 기저유출의 유출수문성분에 대한 연속적인 모의가 가능하도록 하였으며 실시간 홍수예측을 위해 다수의 유량 관측지점과의 실시간 오차 보정이 가능하도록 앙상블 칼만 필터링 기법을 도입하였다. 개발된 모형의 적용성을 평가하기 위해 낙동강 권역을 대상유역으로 선정하였으며 시단위 강우자료, 기상자료, 유량자료를 비롯하여 GIS를 기반의 지형자료를 구축하였다. 연속형 저류함수형의 매개변수 추정결과 주요지점의 관측유량에 대해 높은 적합도를 보였으며 1시간 선행시간의 홍수량 예측결과에서도 높은 정확도를 보이는 것으로 나타났다.

  • PDF

Probabilistic Daecheong Dam Streamflow Prediction using Weather Outlook Weighted Ensemble Streamflow Prediction (확률론적 통계분석을 이용한 대청댐 유입량 예측)

  • Lee, Sang-Jin;Kim, Jeong-Kon;Kim, Joo-Cheol;Woo, Dong-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.303-303
    • /
    • 2011
  • 효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.

  • PDF

Application of a large-scale climate ensemble simulation data to evaluate the scale of extreme rainfall: The case of 2018 Hiroshima extreme-scale rainfall event (극한 호우의 규모 평가를 위한 대규모 기후 앙상블 자료의 적용: 2018년 히로시마 극한 호우의 사례)

  • Kim, Youngkyu;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.290-290
    • /
    • 2022
  • 본 연구는 대규모 기후 앙상블 모의 결과를 이용하여 산정된 극한 강우량을 최근 발생한 극한 호우사상의 규모 평가에 적용하는 것을 목적으로 수행되었다. 2018 년 히로시마 호우사상은 지속시간 24 시간에서 재현기간 1,000 년에 상응하는 극한 규모를 나타냈기 때문에 짧은 기간동안 수집된 관측자료만으로 규모를 평가하기 어렵다. 따라서 이를 평가하고자 대규모 기후 앙상블 모의결과 기반의 d4PDF 자료를 이용하였다. 이 자료는 3,000 개의 연 최대 강우자료를 제공하고, 이를 토대로 통계적 모형 및 가정 없이 비모수적으로 10 년부터 1,000 년의 재현기간을 나타내는 지속시간 24 시간의 확률강우량을 산정했다. 산정된 d4PDF 의 확률강우량은 관측강우량의 확률강우량과 비교하였으며, 관측기간에 가까운 50 년의 재현기간에서는 두 확률강우량의 차이가 3.53%였지만 관측기간 (33 년)과 재현기간 (100 년 이상)의 차이가 증가할수록 오차가 10% 이상으로 증가하는 양상을 나타냈다. 이는 장기간 재현기간에서 관측강우량의 확률강우량은 불확실성을 내포하는 것을 의미한다. d4PDF 의 확률강우량에 대해서 2018 년 히로시마 호우사상은 300 년에 가까운 재현기간을 나타냈다. 미래 기후조건에서의 d4PDF 자료를 이용해 확률강우량을산정했으며, 현재 기후조건대비 미래 기후조건에서 10 년부터 1000 년의 재현기간을 나타내는 확률강우량은 모두 20% 이상으로 증가했다. 미래 기후조건의 확률강우량에 대해 2018 년 히로시마 호우사상은 100 년에 가까운 재현기간을 나타냈으며, 이는 미래 기후조건에서 히로시마 호우사상의 발생 확률이 0.33% (현재 기후)에서 1% (미래 기후)로 증가하는 것을 의미한다. 결과적으로, 대규모 기후 앙상블 모의결과 기반의 d4PDF 는 현재 기후조건과 미래 기후조건하에서 극한 규모의 호우사상의 정량적인 평가에 유용하게 활용될 수 있다.

  • PDF

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.

Data processing system and spatial-temporal reproducibility assessment of GloSea5 model (GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가)

  • Moon, Soojin;Han, Soohee;Choi, Kwangsoon;Song, Junghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.761-771
    • /
    • 2016
  • The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.

Development of Flood Risk Prediction Technique on Nakdong River Coastal Area (낙동강 해안지역 지자체 홍수위험 전망기법 개발)

  • Lee, Myung Jin;Yoo, Young Hun;Chae, Myung Byung;Kim, Hung Soo;Kim, Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.389-389
    • /
    • 2018
  • 최근 기후변화로 인해 국지성 집중호우, 태풍 등 위험 기상의 발생이 증가하고 있으며, 이로 인한 피해도 증가하고 있다. 현재 홍수로 인한 피해를 저감하기 위해 하천 홍수를 중심으로 50개 지점에 대한 홍수 예 경보의 정보를 제공하고 있으나, 이는 지역별 특성을 고려하지 못하고 있어 홍수 예 경보에 대한 논의가 지속되고 있다. 본 연구에서는 지역특성을 반영한 위기경보단계 기준을 설정하고, 행정구역별 홍수위험 전망 기법을 개발하고자 한다. 대상 지역으로는 낙동강 권역의 해안지역 29개 지자체를 선정하였으며, 과거에 발생한 홍수 피해 이력을 조사하고 피해액과 지속시간별 강우와의 상관분석을 실시하여 해당 지자체의 강우 지속기간을 선정하였다. 그 후 피해현상 및 강우량을 기준으로 x축을 구축하고, 강우 앙상블을 통한 강우 발생 가능성을 기준으로 y축을 구축하여 홍수위험전망 매트릭스를 구축하였다. '관심', '주의', '경계', '심각'으로 4단계를 나누어 홍수위험전망 매트릭스를 구축하였고, 각 단계별 피해현상을 구분하여 제시하였다. 본 연구를 통해 지역별 특성을 고려한 홍수위험전망 매트릭스를 제시함으로써, 위험 기상이 발생하였을 때 지자체별 홍수 예 경보를 발령하여 홍수 피해를 최소화 할 수 있을 것으로 판단된다.

  • PDF

Development of Real-Time River Flow Forecasting Model with Data Assimilation Technique (자료동화 기법을 연계한 실시간 하천유량 예측모형 개발)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.199-208
    • /
    • 2011
  • The objective of this study is to develop real-time river flow forecast model by linking continuous rainfall-runoff model with ensemble Kalman filter technique. Andong dam basin is selected as study area and the model performance is evaluated for two periods, 2006. 7.1~8.18 and 2007. 8.1~9.30. The model state variables for data assimilation are defined as soil water content, basin storage and channel storage. This model is designed so as to be updated the state variables using measured inflow data at Andong dam. The analysing result from the behavior of the state variables, predicted state variable as simulated discharge is updated 74% toward measured one. Under the condition of assuming that the forecasted rainfall is equal to the measured one, the model accuracy with and without data assimilation is analyzed. The model performance of the former is better than that of the latter as much as 49.6% and 33.1% for 1 h-lead time during the evaluation period, 2006 and 2007. The real-time river flow forecast model using rainfall-runoff model linking with data assimilation process can show better forecasting result than the existing methods using rainfall-runoff model only in view of the results so far achieved.

Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile (비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정)

  • Jung, Tae-Ho;Kim, Hanbeen;Kim, Hyeonsik;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.165-174
    • /
    • 2019
  • As a nonstationarity is observed in hydrological data, various studies on nonstationary frequency analysis for hydraulic structure design have been actively conducted. Although the inherent diversity in the atmosphere-ocean system is known to be related to the nonstationary phenomena, a nonstationary frequency analysis is generally performed based on the linear trend. In this study, a nonstationary frequency analysis was performed using climate indices as covariates to consider the climate variability and the long-term trend of the extreme rainfall. For 11 weather stations where the trend was detected, the long-term trend within the annual maximum rainfall data was extracted using the ensemble empirical mode decomposition. Then the correlation between the extracted data and various climate indices was analyzed. As a result, autumn-averaged AMM, autumn-averaged AMO, and summer-averaged NINO4 in the previous year significantly influenced the long-term trend of the annual maximum rainfall data at almost all stations. The selected seasonal climate indices were applied to the generalized extreme value (GEV) model and the best model was selected using the AIC. Using the model diagnosis for the selected model and the nonstationary GEV model with the linear trend, we identified that the selected model could compensate the underestimation of the rainfall quantiles.

Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida (하천 유량 예측 시스템 개선을 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Sye-Woon;Martinez, Chris;Asefa, Tirusew
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.127-135
    • /
    • 2012
  • This paper introduced the flow forecast modeling system that a water management agency in west central Florida, Tampa Bay Water has been operated to forecast monthly rainfall and streamflow in the Tampa Bay region, Florida. We evaluated current 1-year monthly rainfall forecasts and flow forecasts and actual observations to investigate the benefits of incorporating rainfall forecasts into monthly flow forecast. Results for rainfall forecasts showed that the observed annual cycle of monthly rainfall was accurately reproduced by the $50^{th}$ percentile of forecasts. While observed monthly rainfall was within the $25^{th}$ and $75^{th}$ percentile of forecasts for most months, several outliers were found during the dry months especially in the dry year of 2007. The flow forecast results for the three streamflow stations (HRD, MB, and BS) indicated that while the 90 % confidence interval mostly covers the observed monthly streamflow, the $50^{th}$ percentile forecast generally overestimated observed streamflow. Especially for HRD station, observed streamflow was reproduced within $5^{th}$ and $25^{th}$ percentile of forecasts while monthly rainfall observations closely followed the $50^{th}$ percentile of rainfall forecasts. This was due to the historical variability at the station was significantly high and it resulted in a wide range of forecasts. Additionally, it was found that the forecasts for each station tend to converge after several months as the influence of the initial condition diminished. The forecast period to converge to simulation bounds was estimated by comparing the forecast results for 2006 and 2007. We found that initial conditions have influence on forecasts during the first 4-6 months, indicating that FMS forecasts should be updated at least every 4-6 months. That is, knowledge of initial condition (i.e., monthly flow observation in the last-recent month) provided no foreknowledge of the flows after 4-6 months of simulation. Based on the experimental flow forecasts using the observed rainfall data, we found that the 90 % confidence interval band for flow predictions was significantly reduced for all stations. This result evidently shows that accurate short-term rainfall forecasts could reduce the range of streamflow forecasts and improve forecast skill compared to employing the stochastic rainfall forecasts. We expect that the framework employed in this study using available observations could be used to investigate the applicability of existing hydrological and water management modeling system for use of stateof-the-art climate forecasts.

Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts (조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발)

  • Kim, Yong-Tak;Kim, Min Ji;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.