Heo, Jae-Yeong;Yoon, Seong Sim;Lim, Ye Jin;Bae, Deg-Hyo
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.128-128
/
2022
최근 호우의 빈도와 규모는 증가하는 추세이며 이에 따른 홍수 피해는 많은 피해를 야기하고 있다. 이러한 관점에서 홍수 피해에 대한 선제적 대응을 위한 요소로써 초단시간 강우예측 정보의 중요성은 매우 높다. 특히, 레이더 자료 기반의 강우예측은 수치예보모델과 비교하여 3시간 이내의 짧은 선행시간 이내의 높은 정확도를 갖고 있어 홍수예보에 다수 활용되고 있다. 최근에는 강우자료의 복잡한 관계와 특징을 고려하기 위해 딥러닝 기반의 강우예측 활용 사례가 증가하고 있으나 국내 적용 사례는 적어 관련 연구가 요구되는 실정이다. 본 연구에서는 레이더 강우를 활용한 딥러닝 기반의 강우예측 기법을 제안하고 이에 대한 적용성을 평가하고자 한다. 2차원 레이더 강우자료의 특징과 시계열 특성을 고려하기 위한 심층신경망 구조를 제안하였으며 기존 딥러닝 모형과의 비교를 통해 활용 가능성을 제시하고자 하였다. 적용 대상지역은 한강 유역으로 선정하였다. 정성적 평가를 위해 임계성공지수(CSI)를 활용하여 예측 강우에 대한 정확도를 평가하였으며 정량적 평가를 위해 예측 강우와 관측 강우의 상관관계를 분석하였다. 평가 결과, 제안하는 방법이 기존 모형과 비교하여 예측오차의 범위가 적고 강우의 위치 변화를 잘 반영하는 것으로 나타났다. 본 연구결과는 초단기간 강우예측 자료를 활용하는 홍수예보의 정확도 향상에 기여할 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.269-273
/
2008
기상청(KMA, Korea Meteorological Administration)에서는 기상수치예보모델을 적용하여 수치예보를 하고 있으며 전지구 모델로는 GDAPS(Global Date Assimilation and Prediction System)를 지역모델은 RDAPS(Regional Date Assimilation and Prediction System)를 사용하고 있다. 수치예보결과를 이용하여 유출량을 예측할 경우 일반적으로 해상도가 높은 지역모델인 RDAPS의 수치예보 결과값을 사용한다. RDAPS는 00UTC와 12UTC에 3시간으로 누적된 자료를 30km 격자에 대하여 예측시간으로부터 48시간에 대하여 자료를 생성한다. 일강우자료를 입력자료로 사용하는 강우-유출 모형의 경우 3시간 누적 자료를 나타나는 RDAPS 수치예보 결과를 이용 시 3시간 scale에서 일(day)시간 scale로 변환시켜주어야 한다. 본 연구에서는 RDAPS의 수치예보 결과의 일(day)시간 scale 변환 방법에 따른 정확도를 비교하여 RDAPS 수치예보 결과의 일(day)시간 scale 변환에 대한 정확도를 비교하여 일(day)시간 scale 변환에 대한 지침을 제공하고자 한다. RDAPS 수치예보 결과값의 특징을 이용하여 RDAPS 결과값을 일(day)시간 scale로 변환하는 방법으로 총 9개방법을 적용하였으며, 참 값으로는 기상청 강수자료를 사용하였으며, 금강유역을 대상으로 유역평균강수량을 계산하여 각 변환 방법에 따른 정확도를 비교하였다.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.281-285
/
2007
본 연구에서는 보다 신뢰성 있고 정확한 정량적 강우예측자료를 생성하기 위하여 레이더강우 및 강우수치예보자료를 합성하는 기법을 제시하였고, 레이더 전처리 및 예측시스템, GIS와 연계한 물리적기반의 분포형모형인 Vflo모형 등 최신 수자원 IT기술을 활용하여 홍수기 돌발홍수에 대응한 초단기 정량적 강우-유출예측을 목적으로 향후 실시간으로 적용 가능한 분포형유출예측시스템의 기반을 구축하고자 하였다. 대상유역은 국지적인 고해상도 지형효과를 고려한 QPM이 개발되어 있는 금강권역의 용담댐유역이며, 예측 강우에 대한 호우사상은 2005년 이후 발생한 3개 강우사상을 대상으로 하였다. 한편, 기상 레이더 자료로부터 산정된 강수량의 수문학적 적용을 위하여 DEM, 토지피복도, 토양도 등의 기본 GIS자료들을 수집 및 구축하였고 물리적기반의 분포형모형(Vflo)의 입력인자로 사용하기 위한 12개의 공간분포형 수문매개변수들을 대표적인 GIS 소프트웨어인 ArcGIS 및 ArcView를 활용하여 추출하였으며, Vflo모형의 현업 적용가능성을 오프라인 상에서 검증해보았다. 모형 검증결과, GIS를 이용한 지형, 토양, 토지피복과 같은 물리적 특성을 사용한 모형의 초기 설정을 향상시킴에 의해 첨두유량, 유출량, 첨두도달시간차 등에서 만족할만한 결과를 보여주었다고 사료된다. 레이더 및 수치예보자료와 합성한 4가지의 형태(QPE, JQPE, QPM, BQPF)의 분포형 입력강우를 이용하여 적용해 본 결과 Nowcasting기법을 이용한 JQPF는 자료의 특성상 초기 1시간30분동안은 비교적 양호한 결과를 얻었으나 3시간 전후로 가면서 예측강우의 질이 저하되기 시작하였으나 QPM을 합성함으로써 생산한 BQPF는 보다 신뢰성있고 양호한 결과를 얻을 수 있었다. 이러한 결과들은 향후 정량적 분포형강우 예측을 이용한 실시간 홍수유출 예측시 댐운영자는 리드타임(홍수선행시간)을 충분히 확보함으로서 안정적이고 예측 가능한 홍수조절을 하는데 도움을 줄 수 있을 것으로 기대된다. 이와 같이 다양한 단기저수지 유입량의 예측정보 제공으로 다목적댐 저수지 운영모형의 효용성을 제고하여 향후 실제 저수지 유입량 예측에 이용함으로써 저수지 단기운영효율 개선에 기여할 수 있을 것으로 사료된다.
Kim, Hyun Il;Han, Kun Yeun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.332-332
/
2021
도시화가 상당히 이뤄지고 기습적인 폭우의 발생이 불확실하게 나타나는 시점에서 재산 및 인명피해를 야기할 수 있는 내수침수에 대한 위험도가 증가하고 있다. 내수침수에 대한 예측을 위하여 실측강우 또는 확률강우량 시나리오를 참조하고 연구대상 지역에 대한 1차원 그리고 2차원 수리학적 해석을 실시하는 연구가 오랫동안 진행되어 왔으나, 수치해석 모형의 경우 다양한 수문-지형학적 자료 및 계측 자료를 요구하고 집약적인 계산과정을 통한 단기간 예측에 어려움이 있음이 언급되어 왔다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 단일 도시 배수분구를 대상으로 관측 강우 자료, 1, 2차원 수치해석 모형, 기계학습 및 딥러닝 기법을 적용한 실시간 홍수위험지도 예측 모형을 개발하였다. 강우자료에 대하여 실시간으로 홍수량을 예측할 수 있도록 LSTM(Long-Short Term Memory) 기법을 적용하였으며, 전국단위 강우에 대한 다양한 1차원 도시유출해석 결과를 학습시킴으로써 예측을 수행하였다. 침수심의 공간적 분포의 경우 로지스틱 회귀를 이용하여, 기준 침수심에 대한 예측을 각각 수행하였다. 홍수위험 등급의 경우 침수심, 유속 그리고 잔해인자를 고려한 홍수위험등급 공식을 적용하여 산정하였으며, 이 결과를 랜덤포레스트(Random Forest)에 학습함으로써 실시간 예측을 수행할 수 있도록 개발하였다. 침수범위 및 홍수위험등급에 대한 예측은 격자 단위로 이뤄졌으며, 검증 자료의 부족으로 침수 흔적도를 통하여 검증된 2차원 침수해석 결과와 비교함으로써 예측력을 평가하였다. 본 기법은 특정 관측강우 또는 예측강우 자료가 입력되었을 때에, 도시 유역 단위로 접근이 불가하여 통제해야 할 구간을 실시간으로 예측하여 관리할 수 있을 것으로 판단된다.
This study evaluated the accuracy of rainfall and flood forecasts in Sancheong basin with three rainfall events such as typhoon and stationary front by using LDAPS provided by Korea Meteorological Agency and MSM provided by Japan Meteorological Agency. In the rainfall forecast result, both LDAPS and MSM showed high forecast accuracy for wide-area prediction such as typhoon event, but local-area prediction such as stationary front has a limit to quantitative precipitation forecast (QPF). In the flood forecast result, the forecast accuracy was improved with the increase of the lead time, and it showed the possibility of LDAPS and MSM in the field of rainfall and flood forecast by linking meteorology and water resources.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.100-100
/
2023
단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.
This study generated the radar-based forecasted rainfall using spatial-scale decomposition method (SCDM) and evaluated the hydrological applicability with forecasted rainfall by KMA (MAPLE, KONOS) in terms of urban flood forecasting. SCDM is to separate the small-scale field (convective cell) and large-scale field (straitform cell) from radar rainfield. And each separated field is forecasted by translation model and storm tracker nowcasting model for improvement of QPF accuracy. As the evaluated results of various QPF for three rainfall events in Seoul and Metropolitan area, proposed method showed better prediction accuracy than MAPLE and KONOS considering the simplicity of the methodology. In addition, this study assessed the urban hydrological applicability for Gangnam basin. As the results, KONOS simulated the peak of water depth more accurately than MAPLE and SCDM, however cannot simulated the timeseries pattern of water depth. In the case of SCDM, the quantitative error was larger than observed water depth, but the simulated pattern was similar to observation. The SCDM will be useful information for flood forecasting if quantitative accuracy is improved through the adjustment technique and blending with NWP.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.119-119
/
2019
최근 기후변화와 이상기후의 영향으로 국지성 호우 및 가뭄, 홍수, 태풍 등 재해 발생 규모가 커지고 그 빈도 또한 많아지고 있다. 이러한 자연재해 및 이상현상에 대한 피해를 예방하고 빠르게 대처하기 위해서는 정확한 강우량 추정 및 강우의 시간적 예측이 필요하다. 이러한 강우의 불확실성을 해결하기 위해서 기상청 등에서는 단일 수치예보가 가지는 결정론적인 예측의 한계를 보완한 초기조건, 물리과정, 경계조건 등이 다른 여러 개의 모델을 수행하여, 확률적으로 미래를 예측하는 앙상블 예측 시스템을 예보기술에 응용하고 있으며 기존 수치모델의 정보와 예보 불확실성에 대한 정보를 동시에 제공하고 있다. 그러나 다양한 자연조건에 대한 불완전한 물리적 이해와 연산 능력 등의 한계로 높은 불확실성이 내포되어 있으므로 불확실성을 최소화하기 위한 편의보정이 수행될 필요가 있다. 강우분석의 적용 이전에 해당 자료의 타당성과 신뢰도의 분석이 필요하다. 본 연구에서는 LENS(Local ENsemble prediction System) 예측값과 시강우 관측값을 단기예측모델에 맞추어 3시간 누적하여 비교하였다. 비교 기간은 호우가 집중되는 2016년 10월로 선정하였으며 대상지역은 울산중구로 선정하였다. LENS를 대상 지역의 관측소 지점값과 행정구역 면적값을 따로 추출한 후, 불확실성을 최소화하기 위해 활용되고 있는 CF 기법과 QM 기법을 이용하여 LENS 모델을 재가공하고 이에 따른 편의보정 기법에 따른 LENS 모델을 과거의 실제강우 관측값과의 비교분석을 이용해 적용성을 검토 및 평가하였다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.63-63
/
2022
기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.