• Title/Summary/Keyword: 강우빈도 지수

Search Result 82, Processing Time 0.019 seconds

Temporal and Spatial Variability of Phytoplankton Communities in the Nakdong River Estuary and Coastal Area, 2011-2012 (2011-2012년 낙동강 하구 및 연안역에서 식물플랑크톤 군집의 시·공간적 변화)

  • Chung, Mi Hee;Youn, Seok-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.214-226
    • /
    • 2013
  • To understand the changing patterns in phytoplankton communities, we conducted 12 surveys along the Nakdong River, its estuary, and adjacent coastal areas between January 2011 and October 2012 (during the period of barrage construction and sediment dredging). Monthly precipitation ranged from 0 to 502 mm during the survey period, and salinity ranged between 0.1 psu and 0.3 psu in the Nakdong River, regardless of the depth, indicating no seawater influence, while salinity showed large seasonal fluctuations in the estuarine and coastal station, ranging from 0.1 psu to 34.8 psu. A total of 402 phytoplankton species were identified, 178 species from the river and 331 species from the estuary and coastal areas. Phytoplankton standing crop increased in 2012 compared to that in 2011, and was found to be highest in the river, followed by the estuary and coastal areas. Among the top 20 species in frequency of occurrence and dominance, Stephanodiscus spp., Aulacoseira granulata, and Aulacoseira granulata var. angustissima and Pseudo-nitzschia spp. were important species along the river-estuary-coastal areas. Diatoms were the major taxonomic group inhabiting the Nakdong river-estuary-coastal areas. A comparison of seasonal dominant phytoplankton species revealed a slight decrease over the years, from 13 species in 2011 to 10 species in 2012. However, no significant difference was found in the diversity of phytoplankton species between the two survey years, although lightly greater diversity was observed in the coastal areas than in the river and estuary. Cluster analysis with community composition data revealed that the community structure varied significantly in 2011 depending on the time of survey, while in 2012, it hardly showed any variation and was simpler. An increase in the phytoplankton standing crop, fewer dominant species, and simpler community structure in 2012 compared to those in 2011 are probably due to the rapid environmental changes along the Nakdong River. To investigate these ecological relationships, it is necessary to conduct further studies focusing on integrated analyses of biocenosis, including phytoplankton with respect to the changes in nutrient distribution, variation of freshwater discharge, and effect area of freshwater in the Nakdong estuary and adjacent coastal areas.

Seasonal Variations of Nitrifying Bacteria in Agricultural Reservoir (농업용 저수지에서의 질화세균의 계절적인 변화)

  • Lee, Hee-Soon;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.152-159
    • /
    • 2002
  • The seasonal variations of nitrifying bacterial population sampled from 3 sites in Moon-Chon reservoir were analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes from August 2000 until July 2001. In addition, physico-chemical parameters such as temperature, pH, chi-a and DOC were measured to determine correlations between those factors and the size of nitrifying bacterial populations. Total bacterial numbers varied in the range of $0.8{\sim}1.5{\times}10^6\;cells/ml$ independent of sites and had the maximal values in March at all 3 stations. The ratio of eubacteria to total bacteria ranged from 44.9% to 79.5%, and the ratio of each nitrifying bacteria to eubacterial numbers reached only $1.0{\sim}7.4%$. The variations of ammonia-oxidizing bacteria ranged from $1.1{\times}10^4$ to $3.0{\times}10^4\;cells/ml$ without noticeable peak values whereas those of nitrite-oxidizing bacteria varied in $1.3{\sim}5.7{\times}10^4\;cells/ml$ with the increasing tendency in winter regardless of the sites. Moreover it was observed that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria. Total bacterial numbers correlated with water temperature (r = 0.355, p<0.05) and DOC (r = 0.58G, p<0.01) positively whereas nitrite-oxidizing bacteria correlated with temperature (r = -0.416, p<0.05) and pH (r = -0.568, p = 0.001) negatively. In addition, DOC represented good correlations with eubacterial numbers (r = 0.448, p<0.01). These results indicate that temperature, DOC and pH might be one of the main factors affecting variations of bacterial populations in the aquatic ecosystem. It was also suggested that FISH method is a useful tool for detection of slow growing nitrifying bacteria.