• 제목/요약/키워드: 강우빈도해석

검색결과 393건 처리시간 0.039초

이변량 빈도해석을 이용한 태풍의 확률강우량 산정 (Estimation of Rainfall Quantile of Typhoon Using Bivariate Frequency Analysis)

  • 엄명진;주경원;김수영;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.375-375
    • /
    • 2012
  • 우리나라는 연강우량의 여름철 집중현상이 뚜렷하며 많은 부분이 태풍에 기인한다. 기후변화로 인하여 최근 들어서 태풍이 수반하는 폭우나 국지성 호우로 인한 강우사상이 증가하고 있어 짧은 시간에 많은 강우량이 발생하여 단기강우의 강도가 증가하고 있다. 이로 인하여 단기간에 예측하기 힘든 큰 강우량이 발생하는 경우가 빈번하여 이와 같은 강우에 의한 홍수를 대비할 필요성이 대두되고 있다. 따라서 본 연구에서는 태풍으로 인한 강우에 대하여 빈도해석을 수행하여 태풍으로 인하여 발생하는 확률강우량을 산정하였다. 태풍은 여러 인자를 포함하고 있는데 강우(1시간, 24시간, 총합), 풍속(최대, 순간최대), 중심최저기압, 중심최대풍속 등이 그것들이며, 강우와 동시에 그 이외의 인자들을 고려하기 위하여 이변량 빈도해석 모형인 copula 모형을 이용하여 빈도해석을 수행하였다. 이와 같이 copula 모형이 구성되면, 조건부 copula의 개념을 이용하여 강우 이외의 인자가 주어졌을 경우의 확률강우량을 산정할 수 있다.

  • PDF

핵밀도 함수를 이용한 지역빈도해석의 적용에 관한 연구 (The Study on Application of Regional Frequency Analysis using Kernel Density Function)

  • 오태석;김종석;문영일;유승연
    • 한국수자원학회논문집
    • /
    • 제39권10호
    • /
    • pp.891-904
    • /
    • 2006
  • 합리적인 수공구조물의 설계를 위해서 확률강우량의 산정은 필수적이며, 확률 강우량을 산정하는 기법은 크게 지점빈도해석과 지역빈도해석으로 구분 지을 수 있다 이 중에서 지역빈도해석은 지점의 부족한 강우자료를 보완하기 위해서 L-모멘트로 확률분포형의 매개변수를 추정하고, 강우 계열의 동질성이 검정된 자료를 빈도분석하여 확률 강우량을 결정하는 기법이다. 이와 같은 지역빈도해석 기법은 매개변수를 선형조합하여 확률분포형의 종류와 크기 및 형상을 결정하여 확률 강우량을 산정하게 된다. 여기서 각 지점별 강우 자료들이 동질성 검정을 통과하였다 하더라도 지점별로 최적의 분포형이 다를 수 있으나, 부족한 강우자료를 보완하기 위해서 동일한 분포형을 따르는 것으로 가정하고 빈도해석을 수행하게 된다. 그러므로 지역빈도해석기법은 확률 분포형을 가정하고 강우자료를 적용하는 과정에서 기존에 매개변수적 빈도해석의 약점을 갖게 된다 따라서 본 연구에서는 변동핵밀도 함수를 동질성이 확보된 강우자료에 적용하여 빈도해석을 수행함으로써 기존의 빈도해석이 가지는 약점을 극복하고자 하였다. 본 연구에서는 기상청에서 관리하는 16개 강우관측소의 강우자료를 수집하여 매년최대 연강우량 계열을 구성해 지점빈도해석과 지역빈도해석을 수행하였다. 지점빈도해석은 매개변수적 기법과 비매개변수적 기법을 모두 적용하였으며, 지역빈도채석은 Index Flood 기법과 L-모멘트 기법을 적용하였다. 또한 변동핵밀도함수를 지역빈도해석에 적용하였으며, 각 기법별로 산정된 확률강우량을 비교 분석하였다.

강우의 스케일 성질을 이용한 특정 지속시간의 강우자료 추정 (Rainfall Data Estimation for Specific Durations Using Scaling Invariance)

  • 김영일;김수영;김태순;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.115-119
    • /
    • 2008
  • 강우빈도해석기법 중 지점빈도해석은 대상지점의 확률강우량을 추정하기 위한 방법으로, 이를 위해서는 특정 지속시간에 대해 구축된 강우자료가 필요하나 현실적으로 대상지점의 특정 지속시간에 대한 자료가 구축되어 있지 않거나, 휴전선 부근의 지역과 북한지역은 강우자료를 구축하기 어려우므로 인근 지점의 자료를 이용하여 빈도해석을 실시하기도 한다. 따라서 본 연구에서는 강우자료간의 스케일 성질을 이용하여 특정 지속시간에 대한 연최대강우자료 추정의 정확성을 판단해 보았고, 강우의 스케일 성질을 이용하여 북한지역의 평강, 원산, 장전에서 특정 지속시간에 대한 연최대강우량을 추정하기 위해 세계기상통신시스템(GTS: Global Telecommunication System)을 통하여 자료를 수집한 북한지역 3개 지점에 대해 강우의 스케일 성질을 적용해 보았다.

  • PDF

Copula 모형을 통한 이변량 빈도해석과 일변량 빈도해석을 통한 확률강우량의 비교.분석 (Comparative Analysis of Rainfall Quantile From Bivariate Frequency Analysis Using Copula Model and Univariate Frequency Analysis)

  • 주경원;신주영;남우성;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.104-104
    • /
    • 2012
  • 최근 기후변화에 의하여 기상현상이 급변하고 있는 추세이며 강우사상의 경향 또한 그러한 변화를 따라가고 있다. 이러한 시점에서 극적인 강우사상에 대하여 대비해야 할 필요성이 대두되고 있으며 빈도해석을 통하여 확률강우량을 제시하는 방법이 연구되고 많은 발전을 거듭하고 있다. 이러한 방법은 모든 설계에 대하여 보편적으로 적용되고 있지만 일변량 빈도해석을 통하여 얻게 되는 확률량(Quantile)은 한 가지 자료계열에 대하여서만 고려할 수 있다. 이러한 단점을 극복하기 위하여서는 다변량 빈도해석을 수행하는 방법이 있으며 이 또한 국내외적으로 활발히 연구되고 있는 분야이다. 본 연구에서는 이변량 빈도해석을 수행하기 위해 3가지의 copula 모형을 선택하였으며 강우량과 강우지속시간을 자료계열로 사용하여 이변량 빈도해석을 수행하였다. 이를 통하여 얻은 확률강우량을 기존의 일변량 빈도해석의 결과와 정량적으로 비교하여 그 결과를 비교 분석하였으며 향후 새로운 빈도해석 방법의 가능성 및 적절성을 판단하고자 하였다.

  • PDF

강우사상 이변량 빈도해석을 위한 Peaks Over Threshold (POT) 방법을 이용한 적정 확률표본 선택 연구 (Appropriate Sample Size for Bivariate Frequency Analysis of Rainfall Event using Peaks Over Threshold (POT))

  • 주경원;김한빈;안현준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.304-304
    • /
    • 2018
  • 이변량 빈도해석은 일반적으로 고정지속기간 강우량에 대해 빈도해석하는 단변량 빈도해석에 비해 지속기간을 확률변수로 이용하여 강우량과 동시에 확률변수로 사용할 수 있다는 장점이 있다. 하지만 확률분포형의 차원이 증가하기 때문에 기존 단변량 빈도해석에서 요구되던 표본크기보다 더 많은 표본이 필요하다. 우리나라 강우관측소의 경우 오래된 관측소의 경우에도 기록년수가 60년을 넘지 않아 연최대계열로 확률표본을 작성할 경우 이변량 빈도해석을 수행하기에 부족할 수 있다. 따라서 본 연구에서는 Peaks Over Threshold (POT) 방법을 이용하여 적정 확률표본을 선택하는 연구를 진행하였다. 서울 기상청 지점의 강우자료로부터 최소무강우시간을 이용하여 모든 강우사상을 추출하였으며 각 강우사상의 강우량과 지속기간이 확률변수로 사용되었다. 기존에 알려진 POT 방법들과 Anderson-Darling 적합도 검정을 이용한 절단값 산정방법등을 적용하여 확률표본 개수의 변화에 따른 주변분포형의 적합도 검정과 이변량 확률모형의 적합성을 살펴보았다.

  • PDF

이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도 (Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis)

  • 권영문;김태웅
    • 대한토목학회논문집
    • /
    • 제29권2B호
    • /
    • pp.155-162
    • /
    • 2009
  • 단변량 빈도해석법은 수공구조물 설계에 널리 사용되고 있다. 하지만 호우사상은 강우량, 최대강우강도, 강우지속기간과 같은 특성으로 표현되기 때문에 단변량 빈도해석법으로는 그 특성을 종합적으로 표현하는데 한계가 있을 수 있다. 이러한 호우사상의 특성들을 함께 표현해 줄 수 있는 이변량 빈도해석법의 사용이 수공구조물의 설계에 필요하다. 본 연구는 서울 강우관측소의 46개년(1961~2006) 시 강우자료를 Gumbel 혼합모형에 적용하여 빈도해석을 수행하였다. 이변량 강우빈도해석을 통해 결합누적분포함수를 산정한 후, 결합재현기간, 그리고 조건부 재현기간을 산정하였다. 이와 같은 이변량 강우빈도해석은 다양한 호우특성들에 대한 확률적 거동에 대한 예측정보를 제공함으로써 수공구조물의 계획 및 설계 그리고 위험도 평가 등의 문제 해결에 유용하게 사용될 수 있다.

국내 극치 강우사상에 대한 Gumbel copula 모형의 적합도 검정 및 적용성 검토 (Assessment of Applicability and Goodness-of-Fit test of Gumbel Copula for Extreme Rainfall Events of South Korea)

  • 주경원;정영훈;서미루;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.279-279
    • /
    • 2020
  • 최근 copula 모형은 여러 확률변수를 갖는 수문현상에 대해 빈도해석을 수행할 경우 결합확률분포형으로 유용하게 사용되고 있다. 하나의 자료를 확률변수로 사용하는 단변량 빈도해석에 비해 여러 수문자료를 동시에 각각 확률변수로 취하여 결합확률분포형을 추정할 수 있는 다변량 빈도해석은 수문자료의 상관성을 고려하면서 확률분포형을 추정할 수 있다는 장점이 있다. Copula 모형 중 Gumbel copula는 extreme-value 확률분포형으로 극치사상에 적합한 확률분포형이다. 본 연구에서는 Gumbel copula를 이용하여 우리나라 기상청 64개 종관기상관측소의 강우자료로부터 극치 강우사상을 추출하고, 이를 이용하여 빈도해석을 수행하였다. 극치 강우사상은 전체 강우사상 중 각 년도별로 최대강우량을 갖는 연최대강우량사상(annual maximum volume event)을 사용하였다. 각 확률변수의 주변분포형으로는 gamma, Gumbel, generalized extreme value, generalized logistic, Weibull 등 5개 확률분포형을 검토하였으며 각각 적합한 주변분포형을 적용하고 copula 모형의 매개변수는 의사최우도법(maximum pseudo-likelihood method)를 사용하여 추정하였다. 또한 추정된 copula 모형은 Cramer-von Mises 함수와 경험적 copula를 이용하여 적합도 검정을 수행하였다. 이를 통해 극치강우사상에 대하여 Gumbel copula 모형의 적용성을 검토하였으며 추정된 결합확률분포형을 이용하여 빈도별 확률강우사상을 2차원 등치선(contour line)형태로 제시하였다.

  • PDF

Burr XII 모형을 이용한 우리나라 극한 강우자료 빈도해석 (Frequency Analyses for Extreme Rainfall Data using the Burr XII Distribution)

  • 서정호;신주영;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.335-335
    • /
    • 2018
  • 최근 이상기후현상으로 지구상의 여러 지역에서 극치 수문 사상의 발생 빈도와 강도가 날로 증가하고 있는 추세이다. 이에 대해 수공구조물의 설계를 위한 극치강우사상의 빈도해석에 있어서 적절한 확률분포모형의 적용은 매우 중요하다. 이에 수문통계분야에서는 generalized extreme value(GEV), generalized logistic(GLO), Gumbel(GUM) 모형과 같은 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 하지만 우리나라 강우 사상의 경우 GEV 분포와 GUM 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 분포 모형이 표현할 수 있는 통계적 특성에 한계를 가지고 있다. 기존의 GEV나 GUM분포로는 적절히 재현되지 않는 자료들을 분석하기 위해서 두 개의 형상매개변수를 가지는 분포형에 대한 연구가 진행되고 있다. 이에 본 연구에서는 두 개의 형상매개변수를 가지는 Burr XII 분포형의 우리나라 극한 강우자료에 대한 적용성을 평가하였다. Burr XII 분포형은 gamma나 exponential 분포 모형처럼 양의 확률변수만을 가지고, Cauchy나 Pareto 분포 모형처럼 두꺼운 꼬리(heavy-tailed distribution) 형상을 나타내기 때문에 비교적 큰 확률변수가 빈번히 나타나는 극치사상에도 적합한 것으로 알려져 있다. 이를 위해 Burr XII 분포 모형을 이용하여 우리나라 강우자료에 대해 지점빈도해석 및 지역빈도해석을 수행하고 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 GEV, GLO, GUM 분포형을 통해 산정된 결과와 비교하였다.

  • PDF

강우의 증가경향성을 고려한 확률강우량 산정법의 적용성 분석 (Analysis of Applicability of Nonstationary Rainfall Frequency Analysis)

  • 이창환;안재현;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1277-1281
    • /
    • 2009
  • 본 연구에서는 권영문 등(2009)에서 제시한 강우의 증가경향성을 고려한 목표년도 확률강우량 산정법의 적용성을 검토하기 위하여 누적평균강우량 회귀직선의 적합도 분석과 모수와 누적평균강우량의 상관분석을 실시하였다. 서울지점의 1961-2006년 관측 강우자료를 바탕으로 지속기간 24시간 연 최대치 자료계열을 구축하여, 정상성 강우빈도해석법을 이용한 확률강우량과 비정상성 강우빈도해석법에 의한 확률강우량을 비교 분석하였다. 여러 가지 경우의 누적평균강우량에 대해서 분석을 실시한 결과, 비정상성 강우빈도해석법에 의한 확률강우량의 적용성이 우수한 것으로 나타났다.

  • PDF

Copula 방법을 통한 강우 빈도 해석 (Rainfall Frequency Analysis Based on the Copula Method)

  • 주경원;신주영;김수영;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.376-380
    • /
    • 2011
  • 강우사상은 강우량, 지속기간, 강우강도 등의 특성으로 표현될 수 있으며 이런 인자들을 같이 고려할수록 그 현상을 보다 종합적으로 표현할 수 있다. 하지만 현재 일반적으로 이루어지는 일변량 빈도해석절차에서는 지속기간을 고정시켜놓고 각 지속시간에 따른 결과만을 도출해 낼 수 있기 때문에 지속기간에 대해 제약적이고 입력자료에 존재하지 않는 지속기간에 대한 결과를 얻기가 어렵다. Copula모델은 두 일변량 분포형을 다변량 분포형으로 연결하여 주는 모델이다. 따라서 강우량과 지속기간을 변수로 사용하면 Copula모델을 통한 이변량 강우빈도해석은 보편적으로 이루어지고 있는 일변량 지점빈도해석보다 지속기간에 대해 유연한 결과를 나타낼 수 있다. 즉, 강우와 지속기간이 동시에 변수로 사용되기 때문에 임의의 지속기간이나 강우에 대해서 확률강우량 및 확률지속기간을 얻을 수 있다. 본 연구에서는 서울지점을 대상으로 1961∼2009년 동안 발생한 강우사상 중 각 년도에서 최대강우량이 발생한 사상을 추출하여 입력자료로 사용하였다. Copula 모형은 Gumbel-Hougaard, Frank, Joe, Clayton, Galambos등 총 5개의 모델을 적용하였고 각 Copula의 매개변수는 준모수방법인 maximum pseudolikelihood estimator를 이용하여 추정하였다.

  • PDF