• 제목/요약/키워드: 강수량예측

검색결과 581건 처리시간 0.037초

기후변화 시나리오 및 치수 대책 변화 분석에 따른 치수안전도 개선 (Improvement of safety for floods according to analysis of climate change scenario and flood defense measurement)

  • 김묘정;김광섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.343-343
    • /
    • 2017
  • 기후변화로 인하여 평균 기온 및 강수량이 증가하고 이에 따라 홍수의 발생 빈도가 증가한다. 기후변화에 따른 미래 예측은 기후변화 시나리오로 분석하고 있으며, 현재 사용하는 기후변화 시나리오는 2013년에 발간된 IPCC (Intergovernmental Panel on Climate Change) 5차 평가보고서(AR5)에서 2007년에 발간된 IPCC 4차 평가보고서(AR4)에 사용한 SRES(Special Report on Emission Scenario) 온실가스 시나리오를 대신하여 대표농도 경로 RCP(Representative Concentration Pathways)를 사용한다. 기후변화 시나리오에 따라 기온 상승률 및 강수량의 증가량, 극한 강우사상의 발생 빈도 및 발생 정도가 다르게 결정되며, 이에 따라 IPCC에서 제시하는 기후변화 취약성 평가 이론의 민감도 지수가 시나리오에 따라 증가하는 정도가 다르게 산정된다. 민감도 지수의 증가는 홍수위험지수의 증가로 이어지며, 이에 따라 치수대책 변화를 분석하여 치수안전도 개선 및 수재해에 의한 위험을 대비할 수 있다. 본 연구에서는 기후변화 시나리오에 따른 연평균강수량, 일최대강수량과 같은 극치 강수량과 치수 대책 변화 및 치수대책변수의 현황, 치수대책변수의 개선가능범위 분석을 통한 치수안전도 개선 효과를 분석하였다.

  • PDF

머신러닝 기반 효과적인 가뭄예측 (Effective Drought Prediction Based on Machine Learning)

  • 김교식;유재환;김병현;한건연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

ConvLSTM을 이용한 위성 강수 예측 평가 (Evaluation of satellite precipitation prediction using ConvLSTM)

  • 정성호;레수안히엔;응웬반지앙;최찬울;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.62-62
    • /
    • 2022
  • 홍수 예보를 위한 강우-유출 분석에서 정확한 예측 강우량 정보는 매우 중요한 인자이다. 이에 따라 강우 예측을 위하여 다양한 연구들이 수행되고 있지만 시·공간적으로 비균일한 특성 또는 변동성을 가진 강우를 정확하게 예측하는 것은 여전히 난제이다. 본 연구에서는 딥러닝 기반 ConvLSTM (Convolutinal Long Short-Term Memory) 모형을 사용하여 위성 강수 자료의 단기 예측을 수행하고 그 정확성을 분석하고자 한다. 대상유역은 메콩강 유역이며, 유역 면적이 넓고 강우 관측소의 밀도가 낮아 시·공간적 강우량 추정에 한계가 있으므로 정확한 강우-유출 분석을 위하여 위성 강수 자료의 활용이 요구된다. 현재 TRMM, GSMaP, PERSIANN 등 많은 위성 강수 자료들이 제공되고 있으며, 우선적으로 ConvLSTM 모형의 강수 예측 활용가능성 평가를 위한 입력자료로 가장 보편적으로 활용되는 TRMM_3B42 자료를 선정하였다. 해당 자료의 특성으로 공간해상도는 0.25°, 시간해상도는 일자료이며, 2001년부터 2015년의 자료를 수집하였다. 모형의 평가를 위하여 2001년부터 2013년 자료는 학습, 2014년 자료는 검증, 2015년 자료는 예측에 사용하였다. 또한 민감도 분석을 통하여 ConvLSTM 모형의 최적 매개변수를 추정하고 이를 기반으로 선행시간(lead time) 1일, 2일, 3일의 위성 강수 예측을 수행하였다. 그 결과 선행시간이 길어질수록 그 오차는 증가하지만, 전반적으로 3가지 선행시간 모두 자료의 강수량뿐만 아니라 공간적 분포까지 우수하게 예측되었다. 따라서 2차원 시계열 자료의 특성을 기억하고 이를 예측에 반영할 수 있는 ConvLSTM 모형은 메콩강과 같은 미계측 대유역에서의 안정적인 예측 강수량 정보를 제공할 수 있으며 홍수 예보를 위한 강우-유출 분석에 활용이 가능할 것으로 판단된다.

  • PDF

Bayesian Hierarchical Kriging 기법을 이용한 강우지역빈도해석 모형 개발 (A Study on Rainfall Regional Frequency Analysis Based A Bayesian Hierarchical Kriging Approach)

  • 김진영;김장경;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.466-466
    • /
    • 2015
  • 지역빈도해석은 수문학에서 오랜 역사를 갖고 있으며, 수년에 걸쳐 수문학적 변량의 정량적 추정을 위해 다양한 접근방법들이 제안되어 왔다. 그러나 제안된 방법들의 가설설정 수준이 높기 때문에 실제 적용에 제약이 많고, 적용 시에도 예측에 대한 불확실성이 높은 문제점이 있다. 본 연구에서는 이러한 문제점을 개선하기 위한 방법으로 계층적 베이지안 모델을 이용한 지역빈도해석 모형을 제안하고자 한다. 본 모형은 2개의 계층적 구조로 구성된다. 첫번째 계층은 재현기간별 GEV 분포의 매개변수를 정규화하여 주변분포로 설정하고, Kriging 기법을 이용하여 지형학적, 기상학적 정보들과 극치강수량 효과를 적합시켜 공간적 이질성과 미계측 유역에 대한 효과적인 보간을 가능하게 한다. 두번째 계층은 지점의 특성을 나타내는 매개변수들간의 공분산을 Bayesian 모델에 연계하여 매개변수들의 공간적 변동성을 나타낸다. 2개 계층의 결합확률분포는 MCMC 기법을 이용하여 예측값에 대한 불확실성을 정량적으로 분석하게 된다. 본 모형을 통해 홍수량 추정 시 필요한 시간 단위 극치강수량의 공간적 분포를 효과적으로 추정할 수 있을 것으로 판단된다.

  • PDF

강우집중에 따른 토양침식의 공간분포 및 침식량 변화에 관한 연구 (A study on the change of sediment yields and erosion spatial distribution by rainfall variation)

  • 김성원;이대업;정안철;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.121-121
    • /
    • 2021
  • 기후변화의 영향으로 국내의 강우량과 강우패턴의 변화가 나타나고 있다. 최근 30년 여름철 집중호우의 평균강수량은 1980년 694.5 mm에서 2000년대 768.7 mm로 평균강수량이 74.2 mm 증가하였다. 평균강수일수는 36일에서 40일로 약 4일 증가하였다. 집중호우의 증가로 국소적 홍수에 의한 재해규모가 증가하고 있는 실정이다. 토양침식은 물의 순환과정에서 있어 나타나는 하나의 현상으로 토양손실을 의미한다. 강우량과 지형 및 토양특성이 토양침식량을 결정하는 주요한 요인이다. 토양침식은 농경지 감소, 고탁수 하천유입, 하천 및 호소내 퇴적으로 인한 수생태환경 변화 등의 다양한 문제를 발생시키고 있다. 그동안 우리나라는 토양침식량을 예측하기 위해 연평균 토양침식예측모형을 적용하고 있으며, 최근에 강우강도를 고려한 토양침식모형에 관한 연구가 진행되고 있다. 본 연구는 동일한 강우량을 Huff 방법을 이용하여 24시간 강수량 자료를 만들고 물리적기반 토양침식모형에 적용하여 나타나는 토양침식과 퇴적 공간분포에 대하여 분석하고자 한다.

  • PDF

ADOM을 이용한 습성침적 플럭스의 산정

  • 임주연;이황운;문난경
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2001년도 가을 학술발표회 발표논문집
    • /
    • pp.60-62
    • /
    • 2001
  • 습성침적은 여러 가지 기상 요소 중 대규모 강수량과 구름의 두께에 의해 큰 영향을 받는다. 실측치를 ADOM에 적용하여 습성침적 플럭스를 산정한 결과, $SO_2$의 침적 플럭스는 대규모 강수량과 구름 두께에 의해 좌우되고, sulfate의 침적 플럭스는 여름에 많고 겨울에 적은 전형적인 sulfate의 습성침적 패턴을 잘 따르며, 구름 내 $SO_2$의 산화정도에 따라 다르게 나타난다. 이상의 연구 결과들은 향후 산성 침적 모형을 사용한 다양한 조건에서의 습성침적 연구 및 나아가 습성침적 플럭스의 예측에 관한 선행 연구로서 도움을 줄 것으로 사료된다.

  • PDF

시공간적 강우특성이 반영된 ESN 알고리즘을 활용한 하수관로 수위 변화 예측 (Prediction of Changes in Water Level in Sewage Pipes Using ESN Algorithm Reflecting Spatial Rainfall Characteristics)

  • 이소현;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.460-460
    • /
    • 2023
  • 최근 범 지구적인 기후변화로 인해 집중호우가 빈번히 발생하고 침수피해가 증가하고 있다. 이에 따른 침수 피해 위험이 큰 지하상가, 지하 주차장, 반지하 주택 등의 침수 발생이 잦아지며 인명 및 재산 피해 발생이 커지고 있다. 이러한 지역은 인근 하수관로의 수위에 따라 침수 영향을 크게 받게 된다. 이에 따른 강우·유출 관계는 침수피해에 대해 대처하기 위해 시공간적 강우 특성이 반영된 하수관로 수위 예측이 중요하다고 판단된다. 이에 본 연구에서 수위 자료는 서울시 하수관로 수위 현황 자료를 활용하였으며, 강수량 자료는 서울 내 서초구 일대의 강수량 자료를 활용하여 연구를 진행하였다. 대상 지역은 저지대에 위치해 침수가 잦은 서초구 서초동으로 선정하였으며, 분석에 사용된 기간은 2012년부터 2021년까지의 수위 자료를 화용하여 이를 바탕으로 순환 신경망인 RNN의 일종이며, 다른 모델의 구조와 비교하여 더욱 간단하고 효율적인 ESN(Echo State Network) 알고리즘을 사용하여 수위 예측을 진행하였다. 분석을 위해 대상 지역의 강수 사상이 발생하여 하수관로의 수위의 변동이 큰 기간을 선정하여 분석을 실시하였다. 2012년부터 2018년까지의 자료를 학습(training) 자료로 활용하였으며, 모형의 검증 위해 통계분석을 실시하여 검증하였다.

  • PDF

미래 인구변화에 따른 수문학적 가뭄 영향 평가 (Evaluation of hydrological drought impact according to future population change)

  • 신지예;손호준;권현한;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.299-299
    • /
    • 2022
  • 수문학적 가뭄 발생의 직접적 영향은 강수부족량이나, 다양한 사회경제적 인자들은 수문학적 가뭄에 간접적으로 영향을 미치고 있다. 물관리 선진기관에서는 인간의 활동 및 물관리 방식에 따라 수문학적 가뭄을 심화시키거나 완화시킬 수 있음을 인지하고, 인간의 물사용이 가뭄에 미치는 영향을 평가하기 위한 다양한 연구가 이루어지고 있다. 본 연구에서는 강수량 및 미래의 인구변화에 따른 수문학적 가뭄의 영향의 정도를 판단함으로써, 인간의 활동이 가뭄에 미치는 영향을 정량적으로 제시하고자 한다. 충정북도 시군지역을 대상지역으로 선정하였으며, 시군 장래인구 추정값을 미래 인구자료로, 미래 유출량이 산정되어 제공되는 RCP 4.5와 RCP 8.5시나리오를 활용하여 미래 가뭄상황 예측하였다. 강수량 및 인구변화가 수문학적 가뭄에 미치는 영향 평가를 위하여 코플라함수 기반의 베이지안 네트워크 모형이 활용하였다. 베이지안 네트워크는 강수량, 인구밀도, 수문학적 가뭄사이의 관계 도출을 위하여 활용되었으며, 베이지안 네트워크 내의 결합확률의 산정을 위하여 코플라 함수가 활용되었다. 미래의 강수량 및 인구밀도의 변화에 따른 수문학적 가뭄의 영향 관계를 분석한 결과는 다음과 같다. 강수량이 인구밀도보다 수문학적 가뭄의 발생에 영향을 미치며, 약 0.2~0.3 정도 발생확률이 크게 산정되었다. 두 인자를 동시에 고려할 경우, 강수량이 적고, 인구밀도가 높아지는 조건(F(강수량)=0.1, F(인구밀도)=0.9)에서는 조건부 CDF 변화율이 크게 나타나, 곧 수문학적 가뭄의 위험성이 높음을 확인할 수 있었다. 인구밀도는 수문학적 가뭄의 발생 위험성을 높이 알려져 있으나, 정량적으로 그 값을 제시한 연구 사례는 찾기 어렵다. 이에 따라 본 연구에서는 가뭄의 영향정도를 정량적으로 표현하였으며, 한 인자만의 영향이 아닌 두 개 이상의 인자들의 복합적인 영향 정도를 제시함으로써 수치적인 비교가 가능하게 하였다. 미래 추정 인자가 인구자료가 한정적이라 인구 자료만을 활용하여 수문학적 가뭄에 미치는 영향을 분석하였으나, 다른 사회경제적 지표를 활용하여 미래 변화에 따른 미래 수문학적 가뭄의 영향 정도의 비교 및 분석 결과를 바탕으로 가뭄 대응 우선순위 선정을 위한 연구자료로 활용 가능할 것으로 사료된다.

  • PDF

GCM을 이용한 2016년 3-10월 짐바브웨 강수 및 가뭄전망 예측 (Prediction of Precipitation deficiency and Intensification of Drought Condition in Zimbabwe using GCM for Mar.-Oct.,2016)

  • 최경민;오재호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.156-156
    • /
    • 2016
  • 2016년 2월 5일, 짐바브웨는 극심한 가뭄으로 인해 인구의 4분의 1이상이 식량난을 겪고 있다며 '국가 재난 사태'를 선포하였다. 한때 아프리카 곡창지대로 불리던 짐바브웨가 극심한 가뭄을 겪게 된 데에는 2015/16년 슈퍼엘니뇨의 영향이 크게 한 몫을 하였는데, 이는 남반구의 여름인 11월부터 이듬해 3월까지인 짐바브웨의 우기가 2015/16년 슈퍼엘니뇨 강도가 절정에 달했던 시기(10월에서 2월)와 겹쳐져 짐바브웨의 강수량이 슈퍼 엘니뇨의 영향을 받게 되었기 때문이다. 게다가 4월부터는 엘니뇨의 영향을 받은 우기가 끝나고 건기가 시작되기 때문에 앞으로 가뭄이 얼마나 더 악화될지 우려되는 상황이다. 짐바브웨의 기후를 살펴보면, 증발량이 강수량보다 많은 건조기후 중에서도 비교적 그 정도가 약한 기후인 반건조 지대에 속한다. 하지만 연강수량 변동에 따라서, 비가 내리는 해에는 토양 수분이 과잉되고 비가 적게 내리는 해에는 심한 물 부족 현상이 일어나게 되기 때문에, 건기가 시작되는 4월부터 짐바브웨 강수 예측은 가뭄이 얼마나 지속될지를 파악하는 데에 아주 중요한 요소가 될 수 있다. 따라서 본 연구에서는 강수 예측 결과를 중심으로 2016년 짐바브웨의 가뭄이 얼마나 지속되고, 또 가뭄의 강도는 어떻게 될지 알아보는 것에 목적을 두고, GCM을 이용하여 2016년 3월에서 10월까지 장기예측을 수행하였다. 경계 자료로는 ECMWF (European Centre for Medium Range Weather Forecasts)에서 제공하는 Sea Ice자료와, NOAA OI (National Oceanic and Atmospheric Administration Optimum Interpolation) Weekly SST자료를 사용하였고 엘니뇨의 영향을 고려하기 위해 IRI (International Research Institute)의 ENSO forecast를 참고하여 SST아노말리에 월별 가중치를 적용하였다. 초기 입력 자료로는 1월 21-30일 10일간의 ECMWF의 재분석 자료를 이용하여 총 10개 멤버의 앙상블 예측을 수행하였고, 8개월(3-10월) 기간에 대해 약 한 달간의 spin-up time을 주었다. 예측 자료를 모델 climatology와 비교하여 월 평균 강수 전망을 분석하였고, 기온과 해면기압의 월 평균자료도 추가 분석하였다. 또한 짐바브웨 지역의 강수 관측 자료와 모델 예측 자료를 이용하여 특정 도시들의 1년 누적강수를 예측 및 분석하였고, 최종적으로 이 결과를 통해 짐바브웨의 가뭄지속가능성을 살펴보았다.

  • PDF

레이더 강수량 데이터가 수문모델링에서 수량에 미치는 영향 -미국 텍사스의 한 유역을 사례로- (The Impacts on Flow by Hydrological Model with NEXRAD Data: A Case Study on a small Watershed in Texas, USA)

  • 이태수
    • 대한지리학회지
    • /
    • 제46권2호
    • /
    • pp.168-180
    • /
    • 2011
  • 강수량 데이터의 정확성은 수리모델링에서 중요하다 WRS-88D (Weather Surveillance Radar - 1988 Doppler) 레이더 시스템에서 예측하는 NEXRAD (Next Generation Radar) 강수량 데이터는 높은 시, 공간 해상도를 갖는 데이터라는 장점이 있다. 이 연구에서는 검증된 SWAT (Soil and Water Assessment Tool) 모델을 이용한 이 전의 연구를 바탕으로 일반 가상관측소와 NEXRAD 강수량 데이터를 비교하여 국지적 강우와 그 강우가 유출량에 미치는 영향에 대해 분석하였다. 이 연구에서는 NEXRAD 강수량 데이터를 이용한 선행 연구에 기상관측소의 데이터를 대체하여 시뮬레이션을 함으로써 그 차이를 알아 보고자 하였다. 한 유역과 1년간의 데이터를 선정하여 비교 분석한 경과 두 강수량 데이터는 큰 차이를 보였다. 이는 기상관측소의 위치가 연구지역과 거리가 있기 때문이다. 가장 큰 강수량의 차이를 보일 때는 3 차이가 94.5mm (NEXRAD 데이터가 더 큰 경우) 와 71.6mm (기상 관측소의 데이터가 더 큰 경우) 까지 나타났다. 이 차이는 강우가 대부분 실제로는 연구지역 밖에서 나타났거나 연구지역만의 국지적 강우임을 나타내는 것이다. 유출량의 비교에서는 NEXRAD를 이용한 시뮬레이션이 측정치에 더 가깝게 예측하였다.