• Title/Summary/Keyword: 강수관측

Search Result 697, Processing Time 0.031 seconds

Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction (인공신경망과 중규모기상수치예보를 이용한 강수확률예측)

  • Kang, Boosik;Lee, Bongki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.485-493
    • /
    • 2008
  • The Artificial Neural Network (ANN) model was suggested for predicting probability of precipitation (PoP) using RDAPS NWP model, observation at AWS and upper-air sounding station. The prediction work was implemented for flood season and the data period is the July, August of 2001 and June of 2002. Neural network input variables (predictors) were composed of geopotential height 500/750/1000 hPa, atmospheric thickness 500-1000 hPa, X & Y-component of wind at 500 hPa, X & Y-component of wind at 750 hPa, wind speed at surface, temperature at 500/750 hPa/surface, mean sea level pressure, 3-hr accumulated precipitation, occurrence of observed precipitation, precipitation accumulated in 6 & 12 hrs previous to RDAPS run, precipitation occurrence in 6 & 12 hrs previous to RDAPS run, relative humidity measured 0 & 12 hrs before RDAPS run, precipitable water measured 0 & 12 hrs before RDAPS run, precipitable water difference in 12 hrs previous to RDAPS run. The suggested ANN has a 3-layer perceptron (multi layer perceptron; MLP) and back-propagation learning algorithm. The result shows that there were 6.8% increase in Hit rate (H), especially 99.2% and 148.1% increase in Threat Score (TS) and Probability of Detection (POD). It illustrates that the suggested ANN model can be a useful tool for predicting rainfall event prediction. The Kuipers Skill Score (KSS) was increased 92.8%, which the ANN model improves the rainfall occurrence prediction over RDAPS.

Study of Direct Parameter Estimation for Neyman-Scott Rectangular Pulse Model (Neyman-Scott 구형 펄스모형의 직접적인 매개변수 추정연구)

  • Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.1017-1028
    • /
    • 2009
  • NSRPM (Neyman-Scott Rectangular Pulse Model) is one of the common model for generating future precipitation time series in stochastical hydrology. There are 5 parameters to compose the NSRPM model for generating precipitation time series. Generally parameter estimation using moment has some problems related with increased objective functions and shows different results in accordance with random variable generating models. In this study, direct parameter estimation method was proposed to cover with disadvantages of parameter estimation using moment. To apply the direct parameter estimation, generating stochastical data variance in accordance with numbers of precipitation events of NSRPM was done. Both kinds of methods were applied at the Cheongju gauge station data. Precipitation time series were generated using 4 different random variable generator, and compared with observed time series to check the accuracies. As a results, direct method showed more stable and better results.

Deelopment of a Multisite Daily Rainfall Simulation Model Using a Machine Learning (기계학습 기법을 이용한 다지점 일강수량 모의 모형 개발)

  • So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 수자원공학에서 일강수량 모의기법은 다양한 목적으로 활용되고 있지만, 일반적으로 홍수와 가뭄의 영향을 고려할 수 있는 수공구조물의 위험도 및 신뢰성 평가 및 수자원 계획을 수립하기 위한 입력 자료생성을 목적으로 활용된다. 유역 단위의 분석시 단일 지점에 대한 강수 모의 기법을 적용할 경우 각각의 지점에서 관측된 강수 자료의 시계열 및 통계치 특성이 효과적으로 재현되지만 공간적으로 발생하는 즉, 지점 간의 종속관계를 재현하지 못하는 문제가 발생한다. 이러한 이유로 공간적인 전이 특성이 있는 가뭄 분석 및 유역내 유출량의 공간적 변동 특성 분석에 단일지점별 모의 결과를 이용할 경우 관측 자료와 상반된 공간적 변동성으로 인하여 잘못된 가뭄 및 유출 분석 결과가 도출되는 문제점이 있다. 따라서, 실제적으로 발생하는 강수 특성을 반영한 유역 단위의 홍수 및 가뭄 등의 수문 분석을 위해서는 지점간의 종속성을 반영할 수 있는 다지점 강수 모의 모형의 적용이 필수적이다. 본 연구에서는 다지점 모의에 있어서, Wilks 모형의 지점별 시변동 특성과 공간상관성 재현 능력, HMM 모형이 갖는 강수 사상별로 분포된 양적 분포 패턴 재현 능력을 복합적으로 나타낼 수 있는 새로운 다지점 일강수량 모의 모형인 기계학습 기반 범주화 기법을 이용한 다지점 일강수량 모의 모형(ML-MRS)을 개발하였다. 또한, 지점별 강수량에 적용되는 확률분포모형은 Gamma 분포로 구성된 혼합모형을 적용하여 단일 확률 분포 모형의 자료 적합 문제를 개선하였다. 모의를 통한 일강수량 시계열 자료는 일 강수자료의 통계량을 효과적으로 모의하였으며, 다지점 모형의 모의 결과를 적용한 가뭄 모의 결과 관측 자료에서 나타나는 공간적 패턴이 재현되었다. 본 모형은 시 공간적 사상을 효과적으로 재현함으로서 지역의 변동특성을 반영한 가뭄, 홍수, 기상 현상 분석 등 활용도가 매우 높을 것으로 판단된다.

  • PDF

Preliminary Analysis of Intensive Observation Data Produced by the National Center for Intensive Observation of Severe Weathers (NCIO) in 2002 (2002년 국가 악기상 집중관측센터에서 생산된 집중관측자료의 분석 및 활용)

  • Kim, Baek-Jo;Cho, Chun-Ho;Nam, Jae-Cheol;Chung, Hyo-Sang;Kim, Jeong-Hoon
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2003
  • The National Center for Intensive Observation of Severe Weathers (NCIO) as a part of METRI's principal project "Korea Enhanced Observing Period; KEOP" was established at Haenam Weather Observatory in order to effectively monitor and observe heavy rainfall in summer, which is essential for the identification of the structure and evolution mechanism of mesoscale severe weather system. The intensive field-based experiments in 2002 within southwestern Korea toward various meteorological phenomena ranging from heavy rainfall to snowfall were conducted in collaboration with KMA(Korea Meteorological Administration) and universities. In this study, preliminary analysis results using intensive observation data obtained from these experiments are presented together with the introduction of NCIO and its operational structure.

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012 (2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석)

  • Jung, Sueng-Pil;Lim, Yun-Kyu;Kim, Ki-Hoon;Han, Sang-Ok;Kwon, Tae-Yong
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.

Summer Precipitation Forecast Using Satellite Data and Numerical Weather Forecast Model Data (광역 위성 영상과 수치예보자료를 이용한 여름철 강수량 예측)

  • Kim, Gwang-Seob;Cho, So-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.631-641
    • /
    • 2012
  • In this study, satellite data (MTSAT-1R), a numerical weather prediction model, RDAPS (Regional Data Assimilation and Prediction System) output, ground weather station data, and artificial neural networks were used to improve the accuracy of summer rainfall forecasts. The developed model was applied to the Seoul station to forecast the rainfall at 3, 6, 9, and 12-hour lead times. Also to reflect the different weather conditions during the summer season which is related to the frontal precipitation and the cyclonic precipitation such as Jangma and Typhoon, the neural network models were formed for two different periods of June-July and August-September respectively. The rainfall forecast model was trained during the summer season of 2006 and 2008 and was verified for that of 2009 based on the data availability. The results demonstrated that the model allows us to get the improved rainfall forecasts until lead time of 6 hour, but there is still a large room to improve the rainfall forecast skill.

Development of Correction Method for Weather Forecast Data considering Characteristics Rainfall (강수의 특성을 고려한 기상 예측자료의 보정 기법 개발)

  • Lee, Seon-Jeong;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.33-33
    • /
    • 2011
  • 현재 우리나라 기상청에서는 단기, 중기 및 장기 예보자료를 생산하고 있으나, 이들 자료는 단순히 일기 예보에 치중되어 생산되고 있어 강우-유출해석에 직접 적용하기에는 시 공간 해상도가 크고 정량적 강수예측의 정확도가 미흡하다. 이에 기상 및 수자원분야에서는 정확도 개선을 위해서 관측강우와 예측강우의 비교 분석을 통해 편차를 산정하여 예측강수를 보정하는 기법을 적용하고 있다. 다만, 기존의 편차보정방법은 보정인자로 강수량만을 고려하기 때문에 정확도 개선에는 한계가 존재한다. 따라서 본 연구에서는 수자원분야의 수치예보자료의 정확도를 향상시키기 위해 규모, 발생영역에 대한 강수의 특성을 고려한 강수예측자료의 편차보정 방법을 제안하고 이를 강우-유출모델에 적용하여 개선정도를 평가하고자 한다. 이에 적용유역을 춘천댐상류유역으로 선정하고 국내 기상청의 RDAPS(Regional Data Assimilation and Prediction System)수치예보자료, 지점강우자료, radar자료의 수문기상자료와 지형자료를 수집하였다. 화천, 평화의 댐 일부 미계측유역의 관측자료로 radar자료를 이용하였다. 이상의 자료를 토대로 강우강도 및 규모, 영향범위를 고려한 예측강우의 편차를 산정하여 RDAPS 수치예보자료의 정확도를 개선하고 평가하였다. 이는 해당 유역뿐만 아니라 주변 유역의 정보를 이용하여 예측강우의 발생위치에 대한 오차를 고려한 방법으로, 각 영역별로 예측강우의 편차보정계수를 산정하여 적용하였다. 또한, 이전시간대의 강우 편차에 대한 오차를 줄이기 위해 정규분포방법을 이용한 Ensemble 편차보정계수를 산정하고 최근 생산된 수치예보자료에 적용하여 확률예측강우를 산정하였다.

  • PDF

The Spatial and Time Pattern Analysis of Rainy Season Precipiation in Seoul, 2002-2011 (최근 10년간 서울지방의 우기시 강우의 시공간 패턴 분석)

  • Um, Myoung-Jin;Shin, Hong-Joon;Joo, Kyung-Won;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.198-198
    • /
    • 2012
  • 본 연구에서는 서울지방의 최근 10년간 우기시 강우자료를 이용하여 시공간패턴에 따른 강수의 변화를 분석하였다. 이를 위하여 GIS 기법, 강우사상 구분법 및 공간의 상관성 분석 등을 적용하였다. 본 연구의 대상지역인 서울은 북위 $37^{\circ}$34', 동경 $126^{\circ}$59' 부근에 위치하며 남북방향으로 30.3 km, 동서방향으로 36.8km에 걸쳐 있으며 그 면적은 약 $605.41km^2$이다. 또 서울 중앙에서는 한강이 동쪽에서 서쪽으로 흐르며 서울을 강북과 강남으로 양분하고 있으며, 서울을 관통하고 있는 한강으로 수많은 지천이 합류하고 있다. 이러한 지리적 특성들로 인하여 서울 지역의 기후는 매우 복잡한 양상을 나타내고 있다. 과거에는 서울지역에 강우관측소의 수가 매우 적어 이러한 현상을 분석하는데 한계가 있었으나 최근에 자동기상관측소(AWS)들의 확충으로 인하여 자료의 양이 넓어졌다. 본 연구에서는 이러한 자료들을 사용하여 강수의 시공간 패턴을 분석하고자 한다. 이를 위하여 강수의 사상을 구분하기 위한 방법인 IETD법(Inter Event Time Definition)을 적용하였으며, 요인분석 및 군집분석을 이용하여 서울의 강수 지역 구분 및 패턴 분석을 실시하였다. 이러한 분석을 통하여 최종적으로 최근 10년간 서울지방의 강수의 시공간 패턴을 제시하고자 하였다.

  • PDF

A Study on a Model of Rainfall Drop-Size Distribution over Daegwanryeong Mountainous Area Using PARSIVEL Observations (PARSIVEL 측정 자료를 활용한 대관령 산악지역 강수입자분포 모형 연구)

  • Park, Rae-Seol;Jang, Min;Oh, Sung Nam;Hong, Yun-Ki
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.518-528
    • /
    • 2014
  • In this study, a model of rainfall drop-size distribution was modified using PARSIVEL-retrieved rainfall drop-size distribution over Daegwanryeong mountainous area. A prototype model (Modified ${\Gamma}$ distribution model) applicable for this area was decided through the comparative analysis between results from models proposed by preceding research and PARSIVEL-retrieved data over Daegwanryeong mountainous area. In order to apply the prototype model for Daegwanryeong region, the parameters (${\alpha}$, A, B) were made via sensitivity experiments and models of the rainfall drop-size distributions for five cases of rainfall rate were proposed. Results from the proposed five models showed high correlations with PARSIVEL-retrieved data ($R^2=0.975$). In order to suggest a generalized form of rainfall drop-size distribution, interaction equations between rainfall rates and parameters (${\alpha}$, A, B) were investigated. The generalized model of the rainfall drop-size distribution was highly correlated with PARSIVEL-retrieved data ($R^2=0.953$), which means that the proposed model from this study was effective for simulating the rainfall drop-size distribution over Daegwanryeong region. However, the proposed model was optimized for rainfall drop-size distribution over Daegwanryeong region. Therefore, broad observations of other regions are necessary in order to develop the representative model of the Korean peninsula.

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.