• Title/Summary/Keyword: 강성 보강

Search Result 661, Processing Time 0.025 seconds

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

Numerical Analysis of Foundation Reinforcing Method using Load Transfer Apparatus (하중전이 장치를 이용한 기초보강공법의 수치해석적 연구)

  • Jeon, Jun-Seo;Choi, Ki-Sun;You, Young-Chan;Ha, Soo-Kyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.617-627
    • /
    • 2021
  • In this study, a numerical analysis using a three-dimensional numerical simulation was performed to assess the applicability of foundation reinforcing method using load transfer apparatus which can be used in the remodeling of deteriorated structures. The numerical model was validated through comparison with the real scale experimental results, and then a parametric study was performed to investigate the effect of friction coefficient of load transfer apparatus and axial stiffness of pile on the performance of foundation reinforcing method. It was confirmed that the foundation reinforcing method considered in this study can efficiently control the load applied to an existing foundation.

Use of a Genetic Algorithm to Predict the Stiffness Reductions and Retrofitting Effects on Structures Subjected to Seismic Loads (지진하중을 받은 구조물의 유전알고리즘 기반 강성저하 및 보강 효과 추정)

  • Lee, Jae-Hun;Ahn, Kwang-Sik;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2020
  • This study examines a method for identifying stiffness reductions in structures subjected to seismic loads and retrofitting effects using a combination of the finite element method and an advanced genetic algorithm. The novelty of this study is the application of seismic loading and its response to anomalies in the tested structure. The technique described in this study may enable not only detection of damaged elements but also the identification of their locations and the extent of damage due to seismic loading. To demonstrate the feasibility of the method, the advanced genetic algorithm is applied to frame and truss bridge structures subjected to El Centro and Pohang seismic loads. The results reveal the excellent computational efficiency of the method and its ability to prevent severe damage from earthquakes.

Performance assessment using the inverse analysis based a function approach of bridges repaired by ACM from incomplete dynamic data (불완전 동적 데이터로부터 복합신소재로 보강된 교량의 함수기반 역해석에 의한 성능 평가)

  • Lee, Sang-Youl;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 2010
  • This work examines the identification of stiffness reduction in damaged reinforced concrete bridges under moving loads, and carries out the performance assessment after repairing using advanced composite materials. In particular, the change of stiffness in each element before and after repairing, based on the Microgenetic algorithm as an advanced inverse analysis, is described and discussed by using a modified bivariate Gaussian distribution function. The proposed method in the study is more feasible than the conventional element-based method from computation efficiency point of view. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the actual bridge modeled with a three-dimensional solid element. The numerical examples show that the proposed technique is a feasible and practical method which can inspect the complex distribution of deteriorated stiffness although there is a difference between actual bridge and numerical model as well as uncertain noise occurred in the measured data.

  • PDF

A Study on Structural Safety Evaluation of Improved PSC Beam Bridges Considering To-Box Reinforcement Effect (박스형 보강효과를 고려한 개선된 PSC Beam교의 구조 안전성 평가에 관한 연구)

  • Han, Sung Ho;Shin, Jae Chul;Bang, Myung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.197-211
    • /
    • 2007
  • The deteriorated PSC Beam bridge is necessary improved reinforcement method. In the study, it is proposed the box reinforcing method which could make the stiffness of the PSC Beam bridges increase more stably through the secondary composition effect of open type PSC Beam bridge's girder which is converted into the consolidation box type and the half panel is formed between the lower flange of the PSC Beam about the deteriorated PSC Beam bridge suffering the capacity decline. In case the proposed reinforcement method combine with the existed external prestressed method, the close analysis depending on the time is conducted by the construction stage because of searching the effect of reinforcement quantitatively. The reinforcement method of the box type which is proposed an efficiency improvement in objective in application case, by a reinforcement method after proposing the whole and bend sectional reinforcement method, against a each reinforcement method evaluated the upward camber which it follows in secondary composite effect and a member stress characteristics. Also, the structural safety of PSC Beam bridge is evaluated quantitatively by examining of rating factor through load carrying capacity evaluation.

Comtribution of surface deformations of GFRP rebar to bond to Concrete (GFRP 보강근 표면이형의 부착성능 기여도에 대한 고찰)

  • Moon, Do-Young;Sim, Jong-Sung;Oh, Hong-Seob;Sim, Jun-Gee;Kim, Jin-Gyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.19-20
    • /
    • 2009
  • Bond of deformed type of GFRP rebar, which has deformations resembles that of ordinary steel rebar, to concrete was investigated experimentally and numerically in this paper. Due to the lower stiffness and strength in shear, surface deformations do not fully works in bond with surrounding concrete. In this paper, the effective surface deformation height of GFRP rebar with ribs was determined based on experimental and numerical results.

  • PDF

Seismic Response of Soil-Reinforced Segmental Retaining Walls by Finite Element Analysis (유한요소해석에 의한 블록식 보강토 옹벽의 지진시 응답특성)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • 본 고에서는 블록식 보강토 옹벽의 지진시 거동에 관한 유한요소해석 결과를 다루었다. 보강토 옹벽의 지진시 변위거동을 검토한 결과 벽체저부를 지점으로 하는 캔틸레버형태의 변위 거동을 보였으며 따라서 옹벽 상단부에서의 보강재 인장력 증가가 현저하게 나타나 벽체전반에 걸친 분포양상은 균등한 경향을 보였다. 한편, 지진하중으로 인한 증분유발인장력에 관하여 검토한 결과 기존의 보강토 옹벽 내진설계기준과 비교하여 정성.정량적인 측면에서 상당한 차이를 보였으며 내진설계기준이 전반적으로 과소평가 하는 것으로 나타났다. 아울러서, 내진설계측면에서 변위억제 방안에 관한 매개변수 연구결과 임의 조건에 있어서 최대의 보강효과를 나타내는 보강재 임계 강성과 포설길이가 존재하며 최적의 보강효과를 얻기 위해서는 이에 대한 종합적인 검토가 요구되는 것으로 나타났다. 본 고에서는 연구결과를 종합적으로 고찰하여 실무 적용관점에서의 주안점을 언급하였다.

  • PDF

A New Grillage Method for Analyzing Orthogonally Stiffened Plated Structures (직교 이방성으로 보강된 평판 구조물 해석을 위한 새로운 방법 연구)

  • 조규남
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.101-112
    • /
    • 1989
  • Development of a procedure for improved modeling of orthogonally stiffened plated grillages is the primary subject of this paper. In the method developed here a modified static condensation procedure is used to get a complete 2-dimensional grillage which represents the stiffness of the original orthogonally stiffened plated structure. The theory and numerical model are applied to a typical structure and the method has been demonstrated to work well for the analysis of orthogonally stiffened plate structures.

  • PDF

Analysis of Crack Growth in the Stiffened Panels by using Finite Element Method (유한요소법을 이용한 보강판의 균열거동해석)

  • 이환우;전원석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.197-202
    • /
    • 2000
  • A simple numerical procedure is presented to determine the stress intensity factors for crack in a stiffened panel subjected to a uniaxial uniform stress normal to the crack. Two types of stiffened panels are analyzed by the finite element method for various values of crack lengths, stiffness ratios, and stiffener spacings. From the finite element solution, the stress intensity factors were determined by using hybrid extrapolation method. Results are presented in graphical forms for upper mentioned parameters.

  • PDF

Analysis of Fatigue Crack Growth Behavior in the Stiffened Panels with Bonded Symmetric Stiffener (접착이음 보강판의 피로거동해석)

  • 이환우;강선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.168-172
    • /
    • 2000
  • The stiffened panel is representative of a large portion of aircraft construction and therefore has much practical importance. In this paper, the influence of various shape parameters on the stress intensity factors and the fatigue crack growth in the panels with bonded composite stiffeners are studied experimentally. Results are presented as crack growth rates for various values of crack lengths, stiffness ratios, and stiffening Materials.

  • PDF