• Title/Summary/Keyword: 강성효과

Search Result 1,349, Processing Time 0.03 seconds

A 9-node Degenerated Shell Element for Inelastic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비탄성 해석을 위한 9절점 퇴화 쉘 요소)

  • 이상진;서정문
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.481-494
    • /
    • 2001
  • An enhanced degenerated shell finite element (FE), which has been developed for inelastic analysis of reinforced concrete structures is described in this paper. Generally, Reissner-Mindlin (RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. As remedies of locking phenomena, reduced integration, incompatible mode and assumed strain method have been used. Especially, the assumed strain method has been successfully used in many FEs. But contrarily, there is a few investigation on the performance of the assumed strains in the inelastic analysis of concrete structures. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method and microscopic concrete material model. Finally, the performance of the present shell element is tested and demonstrated with several numerical examples. From the numerical tests, the present result shows a good agreement with experimental data or other numerical results.

  • PDF

Nonlinear Analysis of RC Beams Considering Fixed-End Rotation due to Bond-Slip (부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석)

  • Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) beams subject to monotonic loadings is proposed on the basis of the moment-curvature relations of RC sections. Unlike previous analytical models which result the overestimation of stiffnesses and underestimation of structural deformations induced from ignoring the shear deformation and assuming perfect-bond condition between steel and concrete, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end. The advantages of the proposed relation, compared with the previous numerical models, are on the promotion in effectiveness of analysis and reflection of influencing factors which must be considered in nonlinear analysis of RC beam by taking into account the nonlinear effects into the simplifying moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed model to the nonlinear analysis of RC structures.

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

A Preliminary Study on the Structural Performance of the Bumper-Beams for High-Strength Steel Applications (고장력강판 적용을 위한 자동차 범퍼빔 구조성능의 기초연구)

  • Kang, Jong-Su;Song, Myung-Hwan;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.78-84
    • /
    • 2017
  • Consistent efforts have been made to reduce the weight of automotive parts by using lightweight materials. This has resulted in the replacement of conventional steels in car body structures with high-strength steels, and the current usage rate has reached 50%. This study examines the structural stiffness and energy absorption capability of bumper beams made of high-strength steels. New types of bumper beam cross sections are proposed.The structural stiffness and maximum bending force were computed via finite element analysis as about 25tons and 7.5tons/mm, and there were no significant differences among the proposedcross sections. Dynamic analysis was also carried out to investigate the energy absorption capabilities of the bumper beams, and the effects of materials and thickness reduction were analyzed. High-strength steel can be used to achieve weight reduction with comparable structural performance to conventional bumper beams.

Transient Analysis of High-rise Wall-Frame Structures with Outriggers under Seismic Load (초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석)

  • Kim, Jin Man;Choe, Eun Hui;Park, Dae Gyu;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.303-312
    • /
    • 2008
  • In this paper, the seismic behavior of shear wal-frame systems is analyzed. The governing equations of the wall-frame systems with outrigger truss are formulated through the continuum approach and the whole structure is idealized as a shear-flexural cantileverwith rotational spring. The effect of shear deformation and flexural deformation of the wall-frame and outrigger trusses are considered and incorporated in the formulation of the wall-frame structures with and without outriggers are compared by using finite element analysis incorporated with the Newmark-${\beta}$ method. Numerical results are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reason ably accurate results in the early design stage of tall building structures.

Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers (강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능)

  • Park, Ji-Hun;Kim, Hun-Hee;Kim, Ki-Myon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.37-48
    • /
    • 2010
  • The seismic control effect of reinforced concrete structures with low energy dissipating capacity due to stiffness degradation is investigated through nonlinear time history analysis. The primary structure is idealized as a SDOF system of modified Takeda hysteresis rule and an elasto-perfectly-plastic nonlinear spring is added to represent a hysteretic damping device. Based on statistics of the numerical analysis, equivalent linearization techniques are evaluated, and empirical equations for response prediction are proposed. As a result, estimation of the ductility demand with proposed empirical equations is more desirable than the equivalent linearization techniques. The optimal yield strengths based on empirical equations are significantly different from the optimal yield strength of elasto-perfectly-plastic systems. Also, the results indicate that the reduction effect of the ductility demand is more remarkable for smaller natural periods.

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

Seismic Responses of Wall-Slab Apartment Building Structures Built on the Soft Soil Layer Considering the Stiffnesses of a Foundation-Soil System (연약지반의 기초지반강성을 고려한 벽식구조 아파트의 지진응답)

  • 김지원;김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.19-27
    • /
    • 2001
  • In this seismic analyses of structures, it is well recognized that the effects of soil-structure interaction can not be ignored and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show the significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out with the rigid base ignoring the characteristics of the foundation and the properties of the underlying soil. In this study, seismic analyses of wall-slob type apartment buildings which have a particular structural type were carried out taking into account the soft soil layer comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Low-rise or middle height wall-slab type apartment buildings built on the deep soft soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is considerably safe but uneconomical to utilize the design spectra of UB-97 for the seismic design of wall-slab type apartment buildings due to conservative design.

  • PDF

Moment Magnifier Method for RC Flat Plate Subject to Combined Axial Compressive and Floor Load (면내 압축력을 받는 플랫 플레이트 슬래브에 대한 모멘트 증대법)

  • Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.243-254
    • /
    • 1999
  • This paper presents a numerical study for developing the moment magnifier method that is applicable to RC flat plates subject to combined axial compressive and floor load. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. The flat plates to be studied are designed in accordance with the Direct Design Method in Korean Building Code for Structural Concrete. This paper proposes the buckling force and the moment magnification factor for the flat plate under the governing load condition that is the combined vertical and subsequently applied uniaxial compressive load. The buckling force is defined with two ingredients: the buckling coefficient and the effective flexural rigidity. Parametric studies are performed to investigate variations of the buckling coefficient and the effective flexural rigidity. Based on the numerical results, this paper provides the design values of the buckling coefficient and the effective flexural rigidity, and the design procedure for the moment magnifier method.

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.