• Title/Summary/Keyword: 강성저하

Search Result 358, Processing Time 0.024 seconds

Energy-Based Hysteretic Models for R/C Members (에너지 소산능력에 기초한 철근콘크리트 부재의 이력모델)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.45-54
    • /
    • 2004
  • Since existing hysteretic models for R/C members focused on presenting the degrading stiffness using empirical equations based on experiments, they cannot accurately predict the energy dissipation capacity during cyclic loading. Recently, design equations which can evaluate the energy dissipation capacity of R/C members were developed. Based on those equations, in the present study, an energy-based hysteretic model for flexure-dominated R/C members was developed. The proposed model was devised to dissipate the same energy as the actual one dissipated during a complete load cycle. The proposed model represents the hysteretic behaviors of R/C members accompanied by stiffness degradation and pinching using primary and cyclic curves and six unloading/reloading rules. The proposed model was verified by comparisons with various experimental results. The energy-based hysteretic model can be used to develop computer programs for static and dynamic analysis/design because it is simple and easily applicable to numerical analysis.

Stiffness Degradation Induced by Seismic Loading on a RC Shear Wall (지진하중에 의한 철근콘크리트 전단벽의 강성 저하에 관한 연구)

  • Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.48-54
    • /
    • 2022
  • This research describes a quantitative procedure used to estimate the effect of concrete cracking on stiffness degradation of concrete shear walls and provides analytical references for the seismic design of concrete shear walls. As preliminary research on the seismic response of concrete shear walls, nonlinear transient analysis was performed with commercial FE software. The study presents the nonlinear time history analysis results in terms of concrete damage and cracking behavior induced by seismic input motions. By varying the input motions, concrete strength and shear wall thickness, the seismic responses of a shear wall were examined with nonlinear time history analysis, and the progressive cracking behavior and corresponding hysteresis loop were described. Based on the analysis results, frequency and stiffness degradation of the shear wall from progressive concrete damage and cracking were captured with respect to the seismic levels. The results of this study suggest that stiffness degradation from concrete cracking should be appropriately considered when determining the seismic capacity of RC shear wall structures.

Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables (손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석)

  • Kim, Sang-Kuk;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • A three-dimensional finite analysis method was proposed to predict the failure of composite double-lap bolted joints, which is based on the stiffness degradation method using damage variables and Hashin's three-dimensional failure criteria. Ladeveze's theory using damage variables to consider the matrix/shear damage was combined with stiffness degradation in fiber direction. Four different failure modes were considered including matrix compression/shear, matrix tension/shear, fiber compression, and tension failures. The friction between bolt and composite and the clamping force were considered using a commercial finite element software ABAQUS. The damage model was incorporated using the user-defined subroutine of the software. The predicted result was verified with the existing test result for bearing tension double shear and showed the deviation ranging 7~16% from test results.

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적충보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue life of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the 90-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminates. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[{90}_2/0_2]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Analytic Hysteretic Model of Reinforced Concrete Members (철근콘크리트 부재의 해석적 이력모델)

  • 정영수
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.133-142
    • /
    • 1991
  • A mathematical hysteretic model has been developed to analytically reproduce the experimental hysteretic behavior of reinforced concrete members. This mode[2, 3] can simulate the nonlinear response of reinforced concrete members with sufficient accuacy, which are characterized by following important hysteretic behaviors: stiffness degradation, strength deterioration and shear effect. In order to illustrate the capabilities of the proposed mathematical model, numerical examples are presented with the reproduction of experimental hysteretic behavior of RC members and frames.

  • PDF

Inelastic Behavior of H-Shaped Beams with Web Openings under Cyclic Loading (반복하중을 받는 유공 H-형강 보의 소성 거동)

  • Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.513-524
    • /
    • 2001
  • A total of nine H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria are based on the formulae proposed by Darwin. The suitability of existing design formulae the effects of plastic hinge on beams with web openings the fracture around the web openings and the influence of cracks neighboring web openings to the beam strength under cyclic loading were also investigated through the observation of the behavior of these beams with various opening dimensions. locations numbers and spacing between the two openings.

  • PDF

Analytical study for effects of shoring stiffness and slab cracking on construction loads of flat plates (플랫 플레이트 시공하중에 대한 동바리 강성 및 슬래브 균열 효과 분석)

  • Kim, Jae-Yo;Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Lim, Joo-Hyuk;Kim, Yong-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.438-441
    • /
    • 2009
  • 휨강성이 작은 바닥시스템인 플랫 플레이트 구조는 응력조건 뿐만 아니라 사용성조건에 의하여 구조적 성능이 결정될 수 있으며, 특히 과도한 시공 하중의 작용은 시공 중 안전성에 대한 단기적인 손상 뿐만 아니라 사용성에 관련된 장기적인 손상을 발생시킬 수 있다. 이러한 플랫 플레이트의 시공하중은 동바리지지 층 수, 시공주기, 슬래브 콘크리트의 재료적인 강성 뿐만 아니라, 동바리의 강성과 슬래브에 발생하는 균열에 의한 영향에 의하여 결정된다. 본 논문에서는 다양한 설계조건에 대한 해석연구를 통하여, 동바리-슬래브의 강성비 변화 및 콘크리트 균열에 의한 단면강성저하가 슬래브들 간의 하중 분포에 미치는 영향을 분석하고, 이러한 동바리 강성 및 슬래브 균열의 영향을 고려한 시공하중 산정법을 제안한다.

  • PDF

Practical Design Method for Coupling Beams of Tall Buildings with Dual Frame System (이중골조형식 고층건물 커플링보의 실용설계)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.525-532
    • /
    • 2014
  • In this study, practical design method of coupling beams is proposed. The member forces varies according to the location of the members and the members at 25%~40% of building height shows large member forces. The 100mm increase of wall thickness causes 3~4% variation of member forces and the 100MPa increase of concrete strength decrease approximately 3% of member forces. The required strength of coupling beams is twice the resistant strength and 80% reduction of coupling beam stiffness is necessary to fulfill the design criteria. The stiffness reduction of coupling beams is not necessary over the entire stories and the strength reduction range can be estimated considering design requirements.

Displacement Response of Degrading Systems to Near-Fault Ground Motions (근접-단층 지진에 대한 저하시스템의 변위응답)

  • 송종걸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • 단층에 근접한 지진동에 대하여 성능이 저하되는 단자유도계의 변위응답에 대하여 연구하였다 5% 의 감쇠비를 갖는 세단계의 성능저하시스템을 5개의 단층에 근접한 지진동에 대하여 해석하였다 해석결과로부터 성능저하시스템의 비탄성 변위응답은 비저하시스템에 비하여 큰 값을 나타냄을 알 수 있었다 또한 성능저하 특성이 증가할수록 변위응답은 커지는 경향이 있다 이러한 변위증폭은 구조물의 고유주기 강도와 성능저하특성에 영향을 받으며 짧은 주기영역에서는 큰 값을 나타내며 긴 주기영역에서는 변위증폭이 거의 발생하지 않는다 단층에 근접한 각각의 지진동에 대한 변위증폭의 최대값은 1초 보다 작은 주기영역에서 비저하시스템의 4배 정도이다 변위증폭계수의 평균값은 짧은 주기영역에서는 2의 값을 가지면 구조물의 고유주기가 길어질수록 1에 수렴해 감을 알 수 있었다.

  • PDF

The Effects of Coupling Beam on Lateral Drift of High-rise Buildings (고층건물의 횡변위에 대한 커플링보의 효과)

  • Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5931-5937
    • /
    • 2011
  • The effects of coupling beam, which is generally used in high-rise building structure system as shear wall-coupling beam, on the lateral drift of high-rise buildings are studied in this paper. Six different analytical models, which are combination of two inputs, such as concrete strength and wall thickness, are selected and analyzed on lateral drifts with different stiffness of coupling beams. MIDAS GEN was used for analysis. Calculated lateral drifts were compared with allowable limits(H/400~H/500) proposed by standard CEN EC 3/1, in order to analyze the control evaluation of coupling beams. Calculated x-direction displacements were 68~87 percent of allowable limit(H/500). With increase of wall thickness(100mm) and concrete strength(5Mpa), eight to ten percent and four percent of x and y-direction displacement were decreased individually. About three percent of lateral displacement was increased with 20 percent decrease of coupling beam stiffness and additional 20 percent decrease resulted in additional five to eight percent increase.