• Title/Summary/Keyword: 강섬유콘크리트

Search Result 504, Processing Time 0.019 seconds

Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete (하이브리드 강섬유 보강 초고성능 콘크리트의 압축거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.213-221
    • /
    • 2016
  • Uniaxial compression tests for ultra-high performance hybrid steel fiber reinforced concrete (UHPC) were performed to evaluate the compressive behavior of UHPC. The UHPC for testing contains hybrid steel fibers with a predetermined ratio using a length of 19 mm and 16 mm straight typed steel fibers. Test parameter was determined as a fiber volume ratio to investigate the effect of fiber volume ratio on the strength and secant modulus of elasticity. Test results showed that the compressive strength and elastic modulus of UHPC increased with increasing the fiber volume ratio. Based on the test results, the compressive strength and modulus of elasticity equations were proposed as function of the compressive strength of unreinforced and fiber reinforced UHPC, respectively. The simplified equations for predicting the mechanical properties of the UHPC were a good agreement with the test data. The proposed equations are expected to be applied to the SFRC and UHPC with steel fibers.

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete (비정질 강섬유보강콘크리트의 휨성능 특성)

  • Ku, Dong-Oh;Kim, Seon-Du;Kim, Hee-Seung;Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, the flexural test of amorphous steel fiber-reinforced concrete was performed according to ASTM C 1609 to investigate its flexural performances. The amorphous steel fibers have different configurations from conventional steel fibers : thinner sections and coarser surfaces. Primary test parameters are fiber type (amorphous and conventional steel fibers), concrete compressive strength (27 and 50 MPa), and fiber volume fraction (0.25, 0.50, and 0.75%). Based on the test results, flexural strength and flexural toughness of the amorphous and conventional steel fiber-reinforced concrete were investigated. The results showed that the addition of the amorphous steel fibers into concrete could enhance both flexural strength and toughness while the addition of the conventional steel fibers into concrete was mainly effective to increase the flexural toughness.

An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents (강섬유 혼입량에 의한 강섬유보강콘크리트의 파괴에너지에 관한 실험적 연구)

  • 장동일;채원규;정원우;손영환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.79-88
    • /
    • 1991
  • In this study, fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Peinforced Concrete) with initial cracks. The relationships between loading. strain, mld-span deflections and CMOD(Crack Mouth Opening Displacement) of the beams were observed under the three point loading system. The effect of the fiber content and the initial crack ratio on the concrete fracture behavior were studied and the fracture toughness, the critical energy release ratio and the fracture energy were also calcul ated from the test results. From the test results, it was known that when the fiber contents are between 0.5% and 1.0%, and 1.5% the average fracture energy of SFRC specimens is about 7~10 times. and about 15 times better than that of the plam concrete specimens respectively.ively.

Investigation on Damping of Steel Fiber Reinforced Concrete (강섬유철근콘크리트보의 에너지감쇠에 관한 연구)

  • 강보순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.159-169
    • /
    • 2000
  • 본논문에서는 강섬유 철근 콘크리트 보(SFRC) 의 감쇄 거동에 대해서 실험적인 방법과 수치 해석적인 방법으로 연구를 수행하였다 SFRC는 보다 향상된 에너지 소산능력으로 일반 철근 콘크리트보에 비하여 뛰어난 감쇄 거동을 보인다. 감쇄거동은 종방향 철근비강섬유의 형태와 부피 콘크리트 강도 응력 수준등에 의해 영향을 받는다 SFRC보의 감쇠는 다양한 수준의 균열상태에서의 동적실험 데이터를 통하여 평가하였다 곡률과 감쇠의 관계식에 기초한 유한요소 프로그램(TICAL) 이 개발되었으며 0.44%의 강섬유를 혼입한 보의 경우 5-35%의 감쇠비 증가를 보였다

  • PDF

Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨 피로거동에 관한 연구)

  • 장동일;채원규;손영현
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC(steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. The three point loading system is used in the fatigue tests. In tl1ese tests, relations between the repeated loading cycles and the mid-span deflections, number of repeated loadmg cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the elastic strain energy and inelastic strain energy of SFRC were studied. A S - N curve \vas drawn to present the fatigue strength of SFRC beam. From che test results, by increasing the steel fiber content the energy lost on the permanent deformation decreases and the energy spent on crack growth increases. But in case of SFRC with the same steel fiber content the higher the steel fiber aspect ratio is, the less the elastic strain energy is. According to S - N curve drawn by the regression analysis on the fatugue test results, the fatigue strength with 2,000,000 repeated loading cycles in SFRC with the steel fiber content is 1.0% shows about 70% on the first crack static flexural strength.

Shear Behavior and Shear Analysis of Reinforced Concrete Members Containing Steel Fibers (강섬유를 혼입한 철근 콘크리트 부재의 전단거동 및 전단해석에 관한 연구)

  • 오병환;임동환;이형준
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.171-180
    • /
    • 1993
  • 본 논문에서는 강섬유를 혼입한 철근콘크리트 부재의 전단거동에 관한 실험 및 이론적 연구를 수행하였다. 이를 위하여 강섬유가 혼입된 구조부재를 제작하여 실험을 수행하여 강섬유의 전단보강 효과를 규명하였으며, 부재의 연성, 극한전단강도 및 초기균열 전단강도 등을 모두 만족하는 최적의 강섬유 혼입량 및 전단 철근 배근량을 제안하였다. 본 실험으로부터 강섬유의 혼입으로 인하여 연성의 증가뿐 아니라, 초기균열강도는 크게 향상되었으며, 극한전단강도 역시 만족할만큼 증가함을 알수 있었다. 위의 실험결과로부터 강섬유 혼입량(체적비)1%, 시방서에서 규정하는 전단철근 필요량의 75%가 가장 만족스러운 조합임을 알 수 있었다. 본 논문에서는 강섬유가 혼입된 철근 콘크리트부재가 극한 전단강도 예측기법이 제시되었으며, 앞으로 강섬유 콘크리트는 연성을 필요로 한는 내진구조물등에 효율적으로 이용될 것으로 사료된다.

Evaluation on Shear Contribution of Steel Fiber Reinforced Concrete in Place of Minimum Shear Reinforcement (최소 전단철근 대용으로의 강섬유 콘크리트의 전단기여도 평가)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.603-613
    • /
    • 2015
  • In current design codes, minimum shear reinforcement is required for reinforced concrete flexural members, and the use of steel fiber reinforced concrete is permitted to replace the minimum shear reinforcements. In the present study, to estimate the effects of shear reinforcements and fibers on shear strength, simply supported beams were tested under transverse loading. The test results showed that the shear strength was significantly increased by the use of fibers. Particularly, the effect of fiber reinforced concrete was pronounced when high-strength concrete was used. The performance of fiber reinforced concrete for minimum shear reinforcement was evaluated using results of the present study and existing tests.

Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams (강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2015
  • Composite construction of precast concrete and cast-in-place concrete is currently used for the modular construction. In this case, the use of steel fiber reinforced concrete (SFRC) could be beneficial for precast concrete. However, the shear strength of such composite members (SFRC and cast-in-place concrete) is not clearly defined in current design codes. In the present study, steel fiber composite beam tests were conducted to evaluate the effect of steel fibers on the composite members. The test variables are the area ratio of SFRC and shear reinforcement ratio. The test results showed that when minimum horizontal shear reinforcement was used, the shear strength of composite beams increased in proportion to the area ratio of steel fiber reinforced concrete. However, because of the steel fiber, the composite beams were susceptible to horizontal shear failure. Thus, minimum horizontal shear reinforcement is required for SFRC composite beams.

Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete (골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동)

  • Ahn, Kyung-Lim;Jang, Seok-Joon;Jang, Sang-Hyeok;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.229-236
    • /
    • 2015
  • This paper describes the effect of aggregate size on compressive behavior of high-strength steel fiber reinforced concrete. The Specified compression strength is 60 MPa and the range of fiber volume fraction is 0~2%. The main variable is the aggregate size, which was used for the aggregate size of 8 and 20 mm. So, ten concrete mixtures were prepared and tested to evaluate the fresh and hardened properties of SFRC at curing ages (7, 14, 28, 56 and 91 days), respectively. Items estimated in this study are the fresh properties (air contents, slump), hardened properties (compressive strength, modulus of elasticity, post-peak response and compressive toughness). As a result, the aggregate size has little effect on the compressive strength and modulus of elasticity. On the other hand, the ductile behavior was shown after post peak and the compressive toughness was increasing as decreasing the aggregate size. These effects are clearly represented in the fiber volume fraction 2%, which are the point appeared fiber ball. It is considered that the decreasing the aggregate size has effect on the fiber dispersibility.