• Title/Summary/Keyword: 강선력

Search Result 2, Processing Time 0.013 seconds

A Study on the Design of Rifling Angle by Setting up an Idealized Rifling Force Curve (이상적인 강선력 곡선에 의한 강선각 설계기법)

  • Cha, Kiup;Ahn, Sangtae;Cho, Changki;Choi, Euijung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Rifling Force can be described with projectile velocity, gas pressure and rifling angle, etc. Under the same conditions, the character of the rifling angle decisively influences the rifling force. To reduce the harmful effect, locally distinct maximum of rifling force has to be avoided. The optimal design methodology of rifling angle curve had been developed by combined Fourier series and polynomial function. When it was tried newly to design the rifling angle curve, this design trial caused not to produce the lower rifling force than the existing design. Normally, the curve of the rifling angle is designed first, then the rifling force is set according to the rifling angle curve. However during the cause analysis, new design methodology was established to design the ideal rifling force curve before the rifling angle design. With this new methodology, the above optimal design method was analyzed and its limitation was confirmed.

A Study on the Optimal Design of Rifling Rate (강선율 최적설계에 관한 연구)

  • Cha, Ki-Up;Cha, Young-Hyun;Lee, Sung-Bae;Cho, Chang-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.998-1005
    • /
    • 2010
  • Rifling force has a torsion impulse effect on the gun tube and thus generates undesirable vibration of the gun tube about its bore axis, putting additional stress on the projectile. High rifling force at the muzzle of the gun tube may adversely influence the trajectory of the projectile. And, the service life of rifled gun barrels is known to depend on the rifling force. Rifling force along the path of the projectile in the longitudinal direction of the gun tube can be described with projectile mass, projectile velocity, gas pressure curve and rifling angle. Under the same conditions, the character of the rifling of the gun barrel decisively influences the rifling force curve. To reduce the above mentioned harmful effect, locally distinct maximum of rifling force has to be avoided and maximum rifling force needs to be minimized. The best way to minimize the maximum rifling force is to design a rifling angle function so that the rifling force curve has a near trapezoidal shape. In this paper a new approach to make the optimal rifling force curve is described. The rifling angle determining the rifling force is developed by combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems.