• Title/Summary/Keyword: 강도 최적화

Search Result 996, Processing Time 0.03 seconds

Member Sizing Optimization for Seismic Design of the Inverted V-braced Steel Frames with Suspended Zipper Strut (Zipper를 가진 역V형 가새골조의 다목적 최적내진설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.

A Study on the Optimum Mix Proportion for Early Strength of Concrete in the Upper Layers of High Rise Building (Part I - 40MPa) (초고층 빌딩용 상층부 콘크리트의 조기강도 확보를 위한 최적배합 도출에 관한 연구 (Part I - 40MPa를 중심으로))

  • Jeon, In-Ki;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.321-324
    • /
    • 2008
  • Recently increasing interest in high-rise building around the world for more than 100 floor, the trend is the increasing use of high-strength and high-flowable concrete so as of productivity improvements and cost savings to improve the performance of the early strength development. This study is to reach the optimal combination by reviewing the performance of high-rise building which is required. The results show that $30.0{\sim}32.5%$ of W/B, $155㎏/m^3$ of unit water and FA10+SP10 is best properties for early strength of concrete.

  • PDF

Prediction of Reliability of Fatigue Limit of S34MnV Steel for Marine Diesel Engine Crank Throw Components (선박용 디젤 엔진 크랭크 스로 부품용 S34MnV강의 피로한도에 대한 신뢰도 예측)

  • Kim, Seon Jin;Kong, Yu Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2016
  • The aim of this study is to estimate the reliability of fatigue limit of the material used for crank throw components according to the staircase method. The material used for crank throw components is forged S34MnV grade steel, which is heat treated by normalizing and tempering. In this work, to predict the reliability of the design fatigue strength, axially loaded constant amplitude fatigue testing was conducted. The test specimens were loaded with an axial push/pull load with a mean stress of 0 MPa, which corresponds to a stress ratio of R=-1. The fatigue test results were evaluated by Dixon-Mood formulas. The values of mean fatigue strength and standard deviation predicted by the staircase method were 296.3 MPa and 10.6 MPa, respectively. Finally, the reliability of the fatigue limit in some selected probability of failure is predicted. The proposed method can be applied for the determination of fatigue strength for design optimization of the forged steel.

Optimum Formulation of Starch and Non-muscle Protein for Alkali Surimi Gel from Jack Mackerel (전갱이의 알칼리 수리미 겔 제조를 위한 전분 및 비근육 단백질의 최적화)

  • 최종덕;최영준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1032-1038
    • /
    • 2003
  • The two-level full factorial and mixture design were used to screen ingredient type and to investigate the effects of ingredients on properties of surimi gel from jack mackerel using measurements of breaking forces, deformation values and color. The addition of starch decreased breaking force significantly (p<0.05), but did not affect deformation. The bovine plasma protein (BPP) among non-muscle proteins increased a breaking force and deformation value. However, the dried egg white increased slightly a breaking force, and decreased greatly a deformation value. The breaking force of gel was increased, but deformation value did not change significantly (p<0.05) with adding BPP. The whiteness of gel was slightly improved with the addition of corn starch and BPP. At 78% moisture, the optimum ratios of ingredients were 89.5∼90.0% for alkali surimi, 4.6∼6.0% for corn starch and 4.3∼5.4% for BPP to obtain above 110g for a breaking force, 4.2 mm for a deformation, and 22.5 for a whiteness.

Effect of Acrylic Acid Contents and Inorganic Fillers on Physical Properties of Acrylic Pressure Sensitive Adhesive Tape by UV Curing (아크릴산 함량 및 무기물 충전제가 UV 경화형 아크릴 점착테이프의 물성에 미치는 영향)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Acrylic pressure sensitive adhesive (PSA) tapes were used for the automotive, the electrical and the electronic industries and the display module junction. In this study, the manufacture of high-strength structural tape used 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC), and UV irradiation for photo-polymerization, and the semi-structural properties of acrylic PSA tape with the AAC content and inorganic filler $SiO_2$ content were investigated. The initial adhesion strength was lowered by the rigidity of molecule chains due to the use of AAC, and the adhesion strength increased with increasing wetting time. The wetability, contact angle, and SEM images of PSA tapes with various contents of AAC were determined. Without filler, the peel strength and dynamic shear strength of PSA tape showed inverse correlation but the peel strength and dynamic shear strength increased with increasing filler content. From these correlations the PSA tapes could be optimized for the applications requiring high performance.

Optimization of Friction Welding of Cr-Mo Steels and Real-Time Nondestructive Evaluation by Acoustic Emission Method (Cr-Mo강의 마찰용접 최적화와 음향방출법에 의한 실시간 비파괴적 평가)

  • Oh, S.K.;Jang, J.H.;Chang, H.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.511-519
    • /
    • 1996
  • The purposes of this study are 1) to develop optimum FRW technique of SNCM220, SCM435, SACM645 and SCM415 bar-to-bar similar friction welding, 2) to develop in-process real-time weld quality nondestructive evaluation technique by acoustic emission method, and 3) to certify of weld quality by inspection of tensile fracture surface on friction welded joints.

  • PDF

Optimal Design for Reliability with Lognormally Distributed Stress and Strength (대수(對數) 정규분포(正規分布)를 하는 부하(負荷)와 강도(强度) 신뢰성(信賴性)모델에서의 최적화(最適化) 설계(設計)에 관(關)한 연구(硏究)(I))

  • Kim, Bok-Man;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.43-53
    • /
    • 1990
  • Mechanical components and structures are a major part of complex systems and the conseguences of their failure can be extremely costly. The ultimate goal of design engineers is to optimize these mechanical and structural design from the point of view of cost, reliability, weight, volume, maintainability and safety. An essential requirement of design optimization is to develop mathematical models for reliability at design stage. This paper is to minimize the cost of resources subject to the constraint that the reliability of the system must meet a specified level. The lagrange multiplier method is used to optimize the lognormal stress-lognormal strength problem. This optimization problem can be reduced to a search problem in one variable. A numerical example is presented to illustrate the optimization problem.

  • PDF

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

Fabrication and Characteristics of Anode Supported Flat Tube Solid Oxide Fuel Cell (연료극 지지체식 Flat Tube 고체산화물 연료전지 제조 및 특성)

  • 김종희;손희정;이길용;유승호;신동원;송락현;현상훈
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.76-76
    • /
    • 2003
  • 제 3세대로 불리우는 차세대 발전시스템인 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)는 연료전지 가운데 발전효율이 가장 높고, NOx와 SOx의 발생이 없는 무공해 청정에너지 발전 시스템으로 많은 연구가 진행되고 있다. 이중 원통형 구조는 전력밀도가 평판형 구조에 비해 다소 떨어지나 반응기체의 밀봉이 쉽고, 기계적 강도가 높으며, 열응력에 대한 저항성이 높아 스텍제작이 비교적 용이하며 장기 운전이 가능하다는 장점이 있으며, 평판형 구조의 경우는 전류의 흐름이 구성요소의 면에 수직방향으로 흐르므로 전력밀도가 높은 장점이 있으나 가스의 밀봉이 어렵고, 기계적 강도나 열응력에 대한 저항성이 높은 단점을 갖고 있다. 본 연구에서는 원통형 구조와 평판형 구조의 상호 장점을 보완하여 기존의 원통형의 구조를 최적화하여 개선한 연료극 지지체식 Flat-Tube형 고체산화물 연료전지의 제조와 특성에 대한 연구를 발표하고자 한다.

  • PDF

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF