• Title/Summary/Keyword: 강도 열화

Search Result 579, Processing Time 0.03 seconds

Characterization of Thermal Degradation of Polymide 66 Composite: Relationship between Lifetime Prediction and Activation Energy (폴리아미드 66 복합소재의 열 열화 특성: 수명 예측과 활성화 에너지의 상관관계)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.712-720
    • /
    • 2012
  • Thermal degradation for glass fiber-reinforced polyamide 66 composite (PA 66) with respect of thermal exposure time has been investigated using optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. As the thermal exposure time was prolonged, a slight increase in tensile strength for only initial stage and afterward, a proportional decrease of tensile strength was observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation with the exposure time. Fourier transform infrared spectroscopy results showed the increase of ketone peak and silica peak on the surface of thermally exposed PA 66. In addition, the thermal decomposition kinetics of PA 66 was analyzed using thermogravimetric analysis at three different heating rates. The relationship between activation energy and lifetime-prediction of PA 66 was investigated by several methodologies, such as statistical tool, UL 746B, Ozawa and Kissinger. The activation energy determined by thermogravimetric analysis had a relatively large value compared with that from the accelerated test. This may result in over-estimating the lifetime of PA 66. In this study, a master curve of exponential fitting has been developed to extrapolate the activation energy at various service temperatures.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

Multiple accelerated degradation test and failure analysis for $Ni-BaTiO_3$ MLCCs ($Ni-BaTiO_3$ MLCCs에 대한 복합 가속 열화 시험 및 고장 분석)

  • Kim, Jung-Woo;Kim, Jin-Seong;Lee, Hee-Soo;Kang, Do-Won;Kim, Jeong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.102-105
    • /
    • 2009
  • The accelerated life time test of the MLCCs with different $BaTiO_3$ particle sizes were conducted at $150^{\circ}C$, 75 V condition and the effect of $BaTiO_3$ particle size on the breakdown voltage and degradation characteristics of MLCCs was investigated. The MLCCs were prepared by using the $BaTiO_3$ particles having the size of $0.525{\mu}m$, $0.555{\mu}m$, $0.580{\mu}m$ and Ni-electrode, respectively. The MLCCs which have the particle size of $0.525{\mu}m$, $0.555{\mu}m$, and $0.580{\mu}m$, respectively were confirmed to meet the standard requirements of X5R(change capacitance within ${\pm}15%$ at $-55{\sim}85^{\circ}C$) by TCC(Temperature Coefficient of Capacitance). The effect of the $BaTiO_3$ particle size on the insulation resistance behavior of MLCCs was confirmed by BDV(Breakdown Voltage) measurements and the cause and degree of degradation of MLCCs were characterized by XPS analysis after the accelerated life test. The MLCCs with $0.525{\mu}m-BaTiO_3$ showed better insulation resistance and BDV characteristics compare to other MLCCs and XPS analysis revealed that the MLCCs degradation is caused by the NiO peak and $BaTiO_3$ peak decrease.

Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea (국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산)

  • Kwon, O-Il;Baek, Yong;Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2007
  • Freezing and thawing cycle is one of the major weathering-induced factors in the mechanical weathering of the rock mass. This natural process accelerates rock weathering process by breaking down the parent rock materials and makes soil or weathered rock formation in a rock slope surface zone. It can also cause reduction of the shear strength in slopes. It is important to calculate the deterioration depth caused by freezing-thawing for a slope stability analysis. In this study, deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was also carried out using collected temperature distribution data for last five years of several major cities in Korea. The analysis was performed based on the distributed rock types in study areas. Thermal conductivities, specific heats and densities of the calculation rocks are tested in the laboratory. They are thermal properties of rocks as input parameters for calculating deterioration depths. Finally, the paper is showing the calculated deterioration depths of each rock type slopes in several major cities of Korea.

The Evaluation of Mechanical Properties of Ultra High Performance Concrete with Using Steel Fiber of Wave Type (물결형 강섬유를 이용한 초고성능 콘크리트의 역학적 특성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF

Variation of Material Properties of Fire-killed Timber - Impact of Time on Degradation of Mechanical Properties - (산불 피해목의 재질변화에 관한 연구(II) - 산불 피해 소나무의 경시적 재질변화 -)

  • Park, Jung-Hwan;Park, Byung-Soo;Kim, Kwang-Mo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • Degradation of mechanical properties of fire-killed Korean red pine has been investigated after death in 5 years period. Impact bending absorbed energy was the most sensitive property by elapsed time after forest fire. It is an indication of incipient decay of the wood and can be useful indicator to monitor any change of mechanical property of fire-killed tree after death. Degradation of mechanical properties was more pronounced in sapwood than heartwood. Impact bending absorbed energy was more reduced than any other properties in both sapwood and heartwood, while compressive strength was least impacted by elapsed time after forest fire. It is recommended that the fire-killed Korean red pine can be harvested in one year after the fire for industrial uses by considering decay and consequent changes of mechanical properties.

Evaluation on Termite Damage of the Traditional Wooden Building by Non-destructive Methods (비파괴 검사에 의한 전통목조건축물의 흰개미 열화 특성 조사)

  • Son, Dong-Won;Lee, Dong-heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 2008
  • The deterioration of Korean traditional wooden house located in seoul was estimated. This house was attacked by termite. To estimate damage status of buildings, non-destructive methods were applied. Some of the post needed to be replaced due to low strength, estimated by nondestructive methods. The house was installed with boiler heating facility, to use office and public education. This kind of heating system changed the environmental condition of the wooden house. The termite which attacked the house was classified as Reticulitermes speratus. Because of durability of wooden house effected by environment, control of the environmental condition is essential for maintaining the wooden house. The installation of modern facility to traditional wooden house should not change the traditional structure and do not effect to durability of wooden house.

Thermo-chemical Cycle with $NiFe_2O_4$ for Water-Splitting to Produce Hydrogen ($NiFe_2O_4$ 금속산화물의 열화학싸이클에 의한 물분해 수소생산기술)

  • Han, Sang-Bum;Kang, Tae-Bum;Joo, Oh-Shim;Jung, Kwang-Deog
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • 금속산화물의 열화학싸이클에 의한 수소생산 소재중 안정성이 우수하고 물분해 수소생산능이 비교적 우수한 $NiFe_2O_4$를 합성하여 열화학수소생산공정 적용시 최적화의 조건에 대하여 검토하였다. 합성한 $NiFe_2O_4$는 격자상수가 $8.34\;{\AA}$이었고, 뫼스바우어에 의해 구조는 Ni이 페라이트 구조인 $AB_2O$의 B위치에 주로 위치하는, A 및 B의 상대적 흡수강도가 57.9:42.1인 역스피넬구조를 보이고 있다. 이러한 구조의 $NiFe_2O_4$의 열적환원은 $610^{\circ}C$부터 시작하여 $1200^{\circ}C$에 이르는 동안 약 1.1 wt%의 무게감소가 관찰된다. 물에 의한 산화과정에서 수소가 발생하게 되는데, $1200^{\circ}C$이하의 환원온도에서 가능한 수소생산량은 약 $0.45\;cm^3/g{\codt}cycle$ 이었다. 산화 환원의 반복과정에서 $NiFe_2O_4$의 XRD에 의한 구조변화는 관찰되지 않아 매우 안정한 구조를 갖는다는 것을 보여주었다. 수소생산을 위한 무게당 싸이클당 수소생산양은 산화 환원과정의 온도범위가 가장 중요하였고 물의 접촉시간은 중요한 요소가 되지 않았다. 열적 환원과정에서 많은 양의 수소생산성능을 보이기 위해서는 $1200^{\circ}C$이상의 고온을 필요로 하는 것을 보여주었다.

Dielectric Brekdown Chatacteristecs of the Gate Oxide for Ti-Polycide Gate (Ti-Ploycide 게이트에서 게이트산화막의 전연파괴특성)

  • Go, Jong-U;Go, Jong-U;Go, Jong-U;Go, Jong-U;Park, Jin-Seong;Go, Jong-U
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.638-644
    • /
    • 1993
  • The degradation of dielectric breakdown field of 8nm-thick gate oxide ($SiO_2$) for Tipolycide MOS(meta1-oxide-semiconductor) capacitor with different annealing conditions and thickness of the polysilicon film on gate oxide was investigated. The degree of degradation in dielectric breakdown strength of the gate oxide for Ti-polycide gate became more severe with increasing annealing temperature and time, especially, for the case that thickness of the polysilicon film remained on the gate oxide after silicidation was reduced. The gate oxide degradation may be occurred by annealing although there is no direct contact of Ti-silicide with gate oxide. From SIMS analysis, it was confirmed that the degration of gate oxide during annealing was due to the diffusion of titanium atoms into the gate oxide film through polysilicon from the titanium silicide film.

  • PDF

The evaluation of water repellent effectiveness of natural oil treated wood (천연유지류 처리재의 발수성능 평가)

  • 이동흡;오형민;강창호;손동원;김종인
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.34-42
    • /
    • 2002
  • This research was carried out to investigate water repellent effectiveness of natural oil treated wood. Linseed oil, castor oil, olive oil, bean oil, perilla oil and sunflower oil were used in this test. For evaluation of water repellent of natural oil treated wood, moisture absorption test, water-drop contact angle test and color difference test of accelerated decomposition by UV and water were used. The moisture absorption amount of natural oil treated wood was less than untreated wood until 3 hours, but it was increased with time, there was no big difference with oil treated wood and untreated wood after 48hours. Oil treated wood and untreated wood showed big difference on contact angle test. It was no big difference by kind and oil concentration. Natural oil treated wood did not showed stability on the weather aging test. Contact angle test could be used on evaluation of wood surface status treated with natural oil.

  • PDF