• Title/Summary/Keyword: 강도한계

Search Result 909, Processing Time 0.031 seconds

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

Effect of Sand Contents on Plastic and Liquid Limits and Shear Strength of Clays (모래 함유량이 점토의 액소성한계 및 전단강도에 미치는 영향)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.65-76
    • /
    • 2014
  • For soil improvement, sand mats or sand compaction piles are often constructed on soft marine clays. In such cases, some amounts of sand and clay are inevitably mixed. Sand or gravel often exists in the weathered soils near the slope surface. This research investigates the effect of mixing sand content on consistency limits and shear strength of clays. Firstly, sand was mixed with kaolinite or bentonite at 0, 9, 17, 23, 29, 33, 50% and then liquid and plastic limits were measured. Both plastic and liquid limits decreased as a sand content increased. The water content of clay-sand mixtures with different sand content increased by 10% or 20% step by step and then their undrained shear strength was measured using a portable vane shear device called Torvane. For all cases, undrained shear strength of clay-sand mixtures decreased rapidly until reaching a certain value. Their state changed from undrained to drained state gradually as the sand content increased, which caused their undrained shear strength to decrease. On the other hand, a series of direct shear tests were also conducted on such clay-sand mixtures to investigate the effect of sand content on cohesion and angle of internal friction. It was found from clay-sand mixtures that their cohesion decreased but angle of internal friction increased as the sand content increased.

Method of assessment for allowable size of weld defects (熔接缺陷의 許容限界 評價方法)

  • 강성원
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.10-17
    • /
    • 1991
  • 용접구조물에서 용접이음부가 차지하는 비율은 매우 작은 경우가 많지만 용접이음부에는 각종 초기결함(이들 결함으로부터 진전하는 피로 균열, 환경에 의한 균열등을 포함) 및 용접 초기의 부정형을 비롯해서 형상적 불연속 등에서 유기되는 국부적인 응력, 변형률의 집중, 잔류응력, 구속응력, 용접금속이 갖는 숙명적인 야금적 특성의 불균일, bond부 및 HAZ부에서의 용접열 싸이클에 의한 재질의 국부적 강도저하등 용접부의 강도를 저하시키는 인자들이 복합되기 쉽고, 용접구조물 전체의 내파괴 건전성평가에서 용접부가 파괴 강도는 매우 중요하다. 용접구조물의 설계, 시공의 목적은 소요성능의 확보에 있고 구조물이 사용중에 성능손실이나 불안정 파괴가 발생하지 않도록 하는 것이 주요요건이 될 것이다. 현재의 제강기술수준에서 볼 때 모재의 강 도보다 오히려 용접부의 강도 특히 피로강도 및 파괴 인성을 적절하고 합리적으로 평가하는 것이 매우 중요하다고 해도 과언이 아닐 것이다. 용접부의 강도를 평가하는데 있어서 용접부에 발 생하는 용접결함에 대한 평가는 매우 중요하며 이들 결함에 대한 허용결함한계를 평가하여 보수 여부 및 용접구조물의 신뢰성을 평가 할 필요가 있다.

  • PDF

Brittle rock property and damage index assessment for predicting brittle failure in underground opening (지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가)

  • Lee, Kang-Hyun;Bang, Joon-Ho;Kim, Jin-Ha;Kim, Sang-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.327-351
    • /
    • 2009
  • Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.

The Effect of Curing Temperature History on Concrete Strength Development (양생온도 이력이 콘크리트 강도발현에 미치는 영향)

  • 고훈범;양은익;음성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.89-100
    • /
    • 1998
  • 본 연구는 양생온도이력이 콘크리트 강도에미치는 영향을 평가하기 위한 것으로 물 시멘트비가 60%, 45%, 26%인 3종류의 콘크리트에대하여 5$^{\circ}C$부터 5$0^{\circ}C$까지의 항온양생과 초기재령에 고온도이력을 변수로 한 변동온도양생을 실시한 공시체의 압축강도를 측정하였다. 또한 그 실험결과에 강도평가 방법의 하나인 Maturity 개념을 도입하여 강도평가에 미치는 재령, w/c, 온도이력 등에 대한 영향을 평가하였다. 항온양생 실험결과에 따르면 물시멘트비가 낮을수록 초기재령에서의 강도발현은 높게 나타나며 양생온도 5$0^{\circ}C$인 경우를 제외하고 재령7일까지의 강도발현은 양생온도가 높을수록 크게 나타나고 있다. 한편, 변동온도양생실험결과에 의하면 초기재령에서 고온양생한 콘크리트의 강도발현은 물시멘트비의 영향을 크게 받으며, 1주 이후의 양생온도가 강도발현에 미치는 영향은 1주까지의 고온도이력에 대한 영향에 비교해 2차적이다. 기존의 Maturity개념인 Saul-Bergstrom의 함수와 Ooi의 함수를 가지고 항온 및 변동온도 양생실험결과를 분석한 결과, 전체적으로 Saul-Bergstrom식에 의한 경우가 실험값과의 차이가 작게 나타났으나 두 식 모두 Maturity 가 큰 경우에는 계산에 의한 값이 실험에 의한 값보다 크게 나타나고 있어 장기 재령시 강도평가는 한계강도 개념을 고려한 새로운 Matruity함수를 제안할 필요가 있다.

Comparative Study Between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis (사면안정해석에 있어서의 유한요소법과 한계평형법의 비교연구)

  • 이동엽;유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.65-74
    • /
    • 2003
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement. This suggests that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analyses were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow nile we selected.

Proposed Limit State Design Method for Encased Composite Columns (매립형 합성기둥의 한계상태설계법 제안)

  • Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.523-533
    • /
    • 1997
  • Current limit state design method for encased composite columns contains irrational and uncertain design equations in defining section and material properties of composite members. Through investigating previous research used in formulating the design equation, this paper explores the irrationality and uncertainty such as 1) transformation of yield stress and elastic modulus for composite section, 2) an equation influencing buckling strength in terms of area rather than moment of inertia, and 3) selection of larger radius of gyration between steel and concrete sections. Improving the design equations this paper proposes two design methods which can be directly used in practical design.

  • PDF

Stability Analysis of Embankment Slopes Consisting of Rock Fragments (암석 버력으로 성토한 사면의 안정성 해석)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Stability analysis of rocky embankment slopes is done by both the limit equilibrium method and the finite difference method. The height or the rocky embankment is approximately 40 m and the side slope is 1 vertical to 1.5 horizontal. The cohesion and internal friction angle of rock debris are assumed zero and 43$^{\circ}$, respectively. For finite difference analysis, strength reduction method is used to calculate the saft factor of the slope. As a result, the safety factor of the slope is discovered to be 1.4 by using either methods. Considering that the design criteria of the safety factor is 1.3, it can be judged that the rock fragments embankment slope is in a stable state.

Prediction of Long-Term Stress Intensity Limit of High-Temperature Creep Structures (고온 크리프 구조물의 장시간 한계응력강도 예측)

  • Kim, Woo-Gon;Ryu, Woo-Seog;Kim, Hyun-Hie
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.648-653
    • /
    • 2003
  • In order to predict stress intensity limit of high-temperature creep structures, creep work-time equation, defined as $W_ct^P=B$, was used, and the results of the equation were compared with isochronous stress-strain curve (ISSC) ones of ASME BPV NH Code. For this purpose, the creep strain tests with. time variations for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at $593^{\circ}C$. The results of log $W_c$ and log t plots showed a good linear relation up to $10^5$ hr. The constants p, B and stress intensity limit values showed comparatively good agreement to those of ASME NH ISSC. It is believed that the relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data.

  • PDF