• Title/Summary/Keyword: 강도계수변화율

Search Result 122, Processing Time 0.028 seconds

Estimation of Non-linear Strength and Stiffness for Silty Sands (실트질 모래지반의 비선형 강도 및 강성도 추정법)

  • Lee Kyung-Sook;Kim Hyun-Ju;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • In general typically granular soils contain a certain amount of fines. It is also widely recognized that foundation soils under working loads show highly non-linear behavior from very early stages of loading. In the present study, a series of laboratory tests with sands of different silt contents are conducted and methods to assess strength and stiffiness characteristics are proposed. Modified hyperbolic stress-strain model is used to analyze non-linearity of silty sands in terms of non-linear Degradation parameters f and g as a function of silt contents and Relative density Dr. Stress-strain curves were obtained from a series of triaxial tests on sands containing different amounts of silt. Initial shear modulus, which is used to normalize Degradation modulus of silty sands, was determined from resonant column test results. From the laboratory test results, it was observed that, as the Relative density increases, values of f decrease and those of g increase. In addition, it was found that values of f and g increase and decrease respectively as a Skeleton void ratio $(e_{sk})$ increases.

High Energy Photon Dosimetry by ESR Spectroscopy in Radiotherapy (ESR Spectroscopy에 의한 치료용 고에너지 광자선의 선량측정)

  • Chu, Sung-Sil
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The finding of long lived free radicals produced by ionizing radiation in organic crystals and the quantification of this effect by electron spin resonance(ESR) spactroscopy has proven excellent dosimetric applicability. The tissue equivalent alanine dosimeter also appear appropriate for radiation therapy level dosimetry. The dose measurement was performed in a Rando phantom using high energy photons as produced by high energy medical linear accelerator and cobalt-60 teletherapy unit. The absorbed dose range of the ESR/alanine dosimetry system could be extended down to 0.1 Gy. The response of the alanine dosimeters was determined for photons at different therapeutic dose levels from less than 0.1 Gy to 100 Gy and the depth dose measurements were carried out for photon energies of 1.25MeV, 6 and 10 MV with alanine dosimeters in Rando phantom. Comparisons between ESR/alanine in a Rando phantom and ion chamber in a water phantom were made performing depth dose measurements to examine the agreement of both methods under field conditions.

  • PDF

Magnetic Properties of Fe-6.0 wt%Si Alloy Dust Cores Prepared with Phosphate-coated Powders (인산염 피막처리 분말을 사용한 Fe-6.0 wt%Si 합금 압분자심의 자기적 특성)

  • Jang, D.H.;Noh, T.H.;Kim, K.Y.;Choi, G.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Dust cores (compressed powder cores) of $Fe-6.0wt\%Si$ alloy with a size of $35\~180\;{\mu}m$ in diameter have been prepared by phosphate coatings and annealings at $600\~900^{\circ}C$ for 1 h in nitrogen atmosphere. Further the magnetic and mechanical properties of the powder cores were investigated. As a general trends, the compressive strength and core loss decreased with the increase in annealing temperature. When annealed at $800^{\circ}C$, the compressive strength was 15 kgf, the permeability and quality factor were 74 and 26, respectively. Moreover the core loss at 50 kHz and 0.1 T induction was $750\;mW/cm^3$, and the percent permeability under the static field of 50 Oe was estimated to be about 78. In addition, the cut-off frequency in the cure representing the frequency dependence of effective permeability was measured to be around 200 kHz. These properties of the $Fe-6.0wt\%Si$ alloy dust cores could be considered to be due to the good insulation effect of iron-phosphate coats, the decrease in magnetocrystalline anisotropy and saturation magnetostriction and the increase in electric resistivity.

Enhanced Properties of Epoxy Molding Compound by Plasma Polymerization Coating of Silica (실리카의 플라즈마 중합 코팅에 의한 에폭시 봉지재의 물성 향상 연구)

  • Roh, J.H.;Lee, J.H.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Silica for Epoxy Molding Compound (EMC) was coated via plasma-polymerization with RF plasma (13.56 MHz) as a function of treatment time, power and pressure. 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allylmercaptan or allylalcohol were utilized for plasma polymerization coating and adhesion of coated silica was evaluated by measuring flexural strength. CTE and water absorption of EMC were also measured, and fracture surface of flexural specimen was analyzed by SEM in order to elucidate the failure mode. The plasma polymer coated silica was analyzed by FT-IR and reactivity of plasma polymer coating with epoxy resin was evaluated with DSC in order to investigate the adhesion mechanism. The EMC prepared from the silica coated with 1,3-diaminopropane or allylamine exhibited high flexural strength, low CTE, and low water absorption compared with the control sample, and also exhibited 100% cohesive failure mode. These results can be attributed to the chemical reaction between the functional groups in the plasma polymer coating and epoxy resin, and also consistent with the results from FT-IR and DSC analysis.

  • PDF

Study on Properties of Al2O3-TiO2 Composites by Wet Method I. Mechanical Properties of Al2O3-TiO2 Composites(2) (습식법에 의한 Al2O3-TiO2 복합체의 합성 및 특성연구 I. Al2O3-TiO2 복합체의 기계적 특성(2))

  • Ryu, Su-Chak
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.153-158
    • /
    • 2002
  • $Al_2O_3$ composites powders with 1∼11 wt% $TiO_2$ were prepared by wet method and sintered at 1350$^{\circ}C$, 1450$^{\circ}C$ for 2h. Mechanical properties and microstructural evolution were investigated in this study. $Al_2O_3$-3 wt% $TiO_2$ composite were high bulk density of 2.37 g/$cm^3$ and low apparent porosity of 6.3%. The composites containing of 3 wt% $TiO_2$ showed moderately high bending strength of 68.9 MPa and the young's modulus of 35.5 MPa. The composites with increasing $TiO_2$ contents exhibit reduced thermal expansion coefficient due to the formation of $Al_2TiO_5$ phase.

Analysis of the Characteristics of the Seismic source and the Wave Propagation Parameters in the region of the Southeastern Korean Peninsula (한반도 남동부 지진의 지각매질 특성 및 지진원 특성 변수 연구)

  • Kim, Jun-Kyoung;Kang, Ik-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.135-141
    • /
    • 2002
  • Both non-linear damping values of the deep and shallow crustal materials and seismic source parameters are found from the observed near-field seismic ground motions at the South-eastern Korean Peninsula. The non-linear numerical algorithm applied in this study is Levenberg-Marquadet method. All the 25 sets of horizontal ground motions (east-west and north-south components at each seismic station) from 3 events (micro to macro scale) were used for the analysis of damping values and source parameters. The non-linear damping values of the deep and shallow crustal materials were found to be more similar to those of the region of the Western United States. The seismic source parameters found from this study also showed that the resultant stress drop values are relatively low compared to those of the Western United Sates. Consequently, comparisons of the various seismic parameters from this study and those of the United States Seismo-tectonic data suggest that the seismo-tectonic characteristics of the South eastern Korean Peninsula is more similar to those of the Western U.S.

A Study on the DWI and Pathologic Findings of Cancer Cells (암 세포주의 확산강조영상과 병리학적 관계에 관한 연구)

  • Seong, Jae-Gu;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.239-244
    • /
    • 2011
  • In this study, we evaluated diffusion weighted imaging (DWI) to investigate whether the DWI parameters can predict characteristic parameters on pathologic specimens of tumor or not. CFPAC-1 was injected subcutaneously on the back flank of athymic nude mice (n=13) then two tumors were initiated on each mouse (2${\times}$13=26 tumors). The mice were sacrificed to make specimen immediately after initial MR imaging then were compared with the MR image. A dedicated high-field (7T) small-animal MR scanner was used for image acquisitions. A T1 and T2 weighted axial image using RARE technique was acquired to measure the T2 values and tumor size. DWI MR was performed for calculating ADC values. To evaluate tumor cellularity and determine the levels of MVD, tumor cells were excised and processed for H-E staining and immunostaining using CD31. T2 values and ADC values were computed and analyzed for each half of the tumors and compared to the correlated specimens slide. Median ADC within each half of mass was compared to the cellularity and MVD in the correlated area of pathologic slide. The mean of ADC value is $0.7327{\times}10^{-3}$ $mm^2/s$ and standard deviation is $0.1075{\times}10^{-3}$ $mm^2/s$. There is a linear relationship between ADC value and tumor necrosis (R2=0.697, p< 0.001). DW image parameters including the ADC values can be utilized as surrogate markers to assess intratumoral neoangiogenesis and change of the internal structure of tumor cells.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays (플렉서블 디스플레이용 박막 소재 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Kim, Hyeong Jun;Yang, Chanhee;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • Commercialization of flexible OLED displays, such as rollable and foldable displays, has attracted tremendous interest in next-generation display markets. However, during bending deformation, cracking and delamination of thin films in the flexible display panels are the critical bottleneck for the commercialization. Therefore, measuring mechanical properties of the fragile thin films in the flexible display panels is essential to prevent mechanical failures of the devices. In this study, tensile properties of the metal and ceramic nano-thin films were quantitatively measured by using a direct tensile testing method on the water surface. Elastic modulus, tensile strength, and elongation of the sputtered Mo, MoTi thin films, and PECVD deposited SiNx thin films were successfully measured. As a result, the tensile properties were varied depending on the deposition conditions and the film thickness. The measured tensile property values can be applied to stress analysis modeling for mechanically robust flexible displays.

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.