• Title/Summary/Keyword: 강구조 설계

Search Result 658, Processing Time 0.029 seconds

A Study on Reliability Based Design Criteria for the Steel Highway Bridge (강도로교(鋼道路橋)의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(硏究))

  • Cho, Hyo Nam;Kim, Woo Seok;Lee, Cheung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 1985
  • This study proposes a reliability based design criteria for the steel bridge (H-beam, plate-girder and composite-beam), which is most common type of steel bridge, and also proposes the theoretical bases of nominal safety factors as well as load and rasistance factors based on the reliability theory. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM (Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the safety pravisions of the current steel bridge design code. Galambo's theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistences by LRFD Format and SGST Format, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. It may be concluded that the proposed LRFD reliability based design provisions for the steel highway bridge give more rational design than the current standard code for steel highway bridge.

  • PDF

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.

A Study on the Elasto-Plasticity Behaviour of a Ship's Plate under Thrust According to Boundary Condition (압축력을 받는 선체판의 경계조건에 따른 탄소성거동에 관한 연구)

  • Ko Jae-Yong;Park Joo-Shin;Park Sung-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.29-33
    • /
    • 2004
  • Design of general steel structure had applied to achieve elastic designing concept so far. Because elastic design supposes that whole structure complies with elasticity formula so that achieve via allowable stress of material. It is concept that calculate stress distribution of construction about action external load and estimate load when the maximum stress reaches equally with allowable stress that is established by maximum safety load of the structure. But, absence that compose actuality structure by deal with external load increase small success surrender and structure hardness falls and structure in limited state finally on the whole as showing complicated process by interference between collapse and buckling under compression. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

A Study on Expansion Possibility of Treatment Capacity in Public Livestock Manure Treatment Plant Integrated Individual Farmhouses (개별농가와 연계한 가축분뇨 공공처리시설의 처리용량 확대 가능성에 관한 연구)

  • Kim, J.H.;Kim, J.H.;Park, C.H.;Kwag, J.H.;Choi, D.Y.;Jeong, K.H.;Chung, U.S.;Yoo, Y.H.;Chung, M.S.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.281-288
    • /
    • 2009
  • The objective of this study is to predict the expansion possibility of treatment capacity in public livestock manure treatment plant (PLMTP) integrated individual farmhouses. According to the treatment efficiency and cost reducing effect, expansion possibility was examined using three cases; (i) decrease of influent concentration from 20,000 mg/L BOD to 1,000 mg/L BOD, (ii) maintenance of low concentration influent with minimum revising existing facilities (BIOSUF) and (iii) maintenance of low concentration influent without revising existing facilities (liquid corrosion method, LCM). In BIOSUF, the treatment capacity increased from 130 ton/day to 300 ton/day. Also, LCM resulted in expansion of treatment capacity from 210 ton/day to 250 ton/day while that of designed concentration influent decreased from 210 ton/day to 190 ton/day. The treatment costs were 14,674 won/ton and 9,929 won/ton for BIOSUF and LCM, respectively. After some revisions, it will be changed to 7,221 won/ton and 8,277 won/ton. Therefore, it must be considered that the livestock manure treats to low concentration and flows into PLMTP for the efficient operation and reducing treatment cost.

  • PDF

Comparison of Measured Natural Frequencies of a Railway Bridge Specimen Between Different Excitation Methods (철도교량 시험체의 가진방법에 따른 고유진동수 측정치 변동에 대한 비교 분석)

  • Kim, Sung-Il;Lee, Jungwhee;Lee, Pil-Goo;Kim, Choong-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.535-542
    • /
    • 2010
  • Precise estimation of a structure's dynamic characteristics is indispensable for ensuring stable dynamic responses during lifetime especially for the structures which can experience resonance such as railway bridges. In this paper, the results of forced vibration tests of different excitation methods (vibration exciter and impact hammer) are compared to examine the differences and the cause of differences of extracted natural frequencies. Consequently a natural frequency modification method is suggested to eliminate effects of non-structural disturbance factors. Also, sequential forced vibration tests are performed before and after track construction according to the construction stage of a railway bridge, and the variation of natural frequencies are examined. Effect of added mass of vibration exciter and variation of support condition due to the level of excitation force are concluded as the major cause of natural frequency differences. Thus eliminating these effects can enhance the reliability of the extracted natural frequencies. Construction of track affects not only the mass of structure but also the stiffness of the structure. Also, the amount of increase in stiffness varies according to the level of structural deflection. Therefore, reasonable estimation of the level of structural response during operation is important for precise natural frequency calculation at design phase.

Development of Steel Composite Cable Stayed Bridge Weigh-in-Motion System using Artificial Neural Network (인공신경망을 이용한 강합성 사장교 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.799-808
    • /
    • 2008
  • The analysis of vehicular loads reflecting the domestic traffic circumstances is necessary for the development of adequate design live load models in the analysis and design of cable-supported bridges or the development of fatigue load models to predict the remaining lifespan of the bridges. This study intends to develop an ANN(artificial neural network)-based Bridge WIM system and Influence line-based Bridge WIM system for obtaining information concerning the loads conditions of vehicles crossing bridge structures by exploiting the signals measured by strain gauges installed at the bottom surface of the bridge superstructure. This study relies on experimental data corresponding to the travelling of hundreds of random vehicles rather than on theoretical data generated through numerical simulations to secure data sets for the training and test of the ANN. In addition, data acquired from 3 types of vehicles weighed statically at measurement station and then crossing the bridge repeatedly are also exploited to examine the accuracy of the trained ANN. The results obtained through the proposed ANN-based analysis method, the influence line analysis method considering the local behavior of the bridge are compared for an example cable-stayed bridge. In view of the results related to the cable-stayed bridge, the cross beam ANN analysis method appears to provide more remarkable load analysis results than the cross beam influence line method.

The Policy Package Related to Essential Medical Service: The Key Is Elaboration and Solidification (필수의료 정책 패키지, 내실화가 관건이다)

  • Sun-Hee Lee
    • Health Policy and Management
    • /
    • v.34 no.1
    • /
    • pp.1-3
    • /
    • 2024
  • Currently, the issue of poor accessibility to essential medical services has been brought to light as a social discontent. In order to strengthen the essential medical service system, the government has announced the "the policy package related to essential medical service" as a comprehensive solution and has vowed to invest more than 10 trillion won by 2028. As it contains crucial elements for changing the framework of the healthcare system, I would like to present several points to consider in policy implementation. Given that this package contains important elements for changing the framework of the healthcare system, there are a few issues to consider in policy implementation. First, a mechanism to prevent politicization should be established when designing the physician training system. Second, changing from a hospital centered on residents to one centered on specialists means that the society bears the cost of training residents, while paying a high price for specialist services. The willingness of society to pay for the costs incurred by such a change should be carefully considered, and an appropriate budget must be prepared. Third, as the operation of shared human resources and inter-organizational networking, among other detailed policy measures, are still at a level of conceptual discussion, various issues should be solidly reviewed and considered for in the mid to long term to suit the conditions of the domestic healthcare system.