• Title/Summary/Keyword: 갑천

Search Result 171, Processing Time 0.023 seconds

Water Quality and Ecosystem Health Assessments in Urban Stream Ecosystems (도심하천 생태계에서의 수질 및 생태건강성 평가)

  • Kim, Hyun-Mac;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2008
  • The objectives of the study were to analyze chemical water quality and physical habitat characteristics in the urban streams (Miho and Gap streams) along with evaluations of fish community structures and ecosystem health, throughout fish composition and guild analyses during 2006$\sim$2007. Concentrations of BOD and COD averaged 3.5 and 5.7 mg L$^{-1}$, in the urban streams, while TN and TP averaged 5.1 mg L$^{-1}$ and 274 ${\mu}g$ L$^{-1}$, indicating an eutrophic state. Especially, organic pollution and eutrophication were most intense in the downstream reach of both streams. Total number of fish was 34 species in the both streams, and the most abundant species was Zacco platypus (32$\sim$42% of the total). In both streams, the relative abundance of sensitive species was low (23%) and tolerant and omnivores were high (45%, 52%), indicating an typical tolerance and trophic guilds of urban streams in Korea. According to multi-metric models of Stream Ecosystem Health Assessments (SEHA), model values were 19 and 24 in Miho Stream and Gap Stream, respectively. Habitat analysis showed that QHEI (Qulatitative Habitat Evaluation Index) values were 123 and 135 in the two streams, respectively. The minimum values in the SEHA and QHEI were observed in the both downstreams, and this was mainly attributed to chemical pollutions, as shown in the water quality parameters. The model values of SEHA were strongly correlated with conductivity (r=-0.530, p=0.016), BOD (r=-0.578, p< 0.01), COD (r=-0.603, p< 0.01), and nutrients (TN, TP: r>0.40, p<0.05). This model applied in this study seems to be a useful tool, which could reflect the chemical water quality in the urban streams. Overall, this study suggests that consistent ecological monitoring is required in the urban streams for the conservations along with ecological restorations in the degradated downstrems.

Planning for Securing Instreamflow of Gapcheon Stream in Daejeon (대전 갑천의 유지유량 확보 방안)

  • Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.87-98
    • /
    • 2009
  • The objective of this study is to evaluate the effect of increasing instream flow at Gapcheon stream of Daejeon city by considering two virtual reservoirs upstream, respectively; Geum-gok reservoir and Koe-gok reservoir upstream, respectively. The paralleled and cascaded reservoir operations were performed including the existing Jang-an and Bang-dong reservoirs. The results are summarized as follows. Firstly, from the Bang-dong and Geum-gok cascaded reservoir's water balance analysis, instream flow of $6.83Mm^3$ was able to be supplied to downstream, and water supply indexes of Geum-gok reservoir were analyzed to have the rate of water supply divided by watershed area of 403.4 mm, the rate of water supply divided by rainfall of 33.0 %, the rate of water supply divided by inflow of 96.4 %, the rate of water supply divided by storage capacity of 81.9 %, and the rate of inflow divided by storage capacity of 112.3 %. Secondly, from the Jang-an and Geum-gok paralleled reservoir's water balance analysis, flow durations at Gapcheon station were analyzed to have Q95 (the 95th high flow) of $4.806m^3/s$, Q185 (the 185th high flow) of $2.217m^3/s$, Q275 (the 275th high flow) of $1.140m^3/s$, and Q355 (the 355th high flow) of $0.887m^3/s$. Thirdly, inflow to Koe-gok reservoir was simulated including the Jang-an and Bang-dong paralleled reservoir's water balance analysis, instream flow of $49.60Mm^3$ was able to be supplied from Koe-gok reservoir to downstream, and water supply indexes of Koe-gok reservoir were analyzed to have the rate of water supply divided by watershed area of 246.5 mm, the rate of water supply divided by rainfall of 19.4 %, the rate of water supply divided by inflow of 40.8 %, the rate of water supply divided by storage capacity of 412.1 %, and the rate of inflow divided by storage capacity of 1,189.8 %. Fourthly, daily streamflows at Gapcheon stream were simulated including outflows from Koe-gok reservoir, flow durations at Gapcheon station were analyzed to have Q95 (the 95th high flow) of $4.501m^3/s$, Q185 (the 185th high flow) of $2.277m^3/s$, Q275 (the 275th high flow) of $1.743m^3/s$, and Q355 (the 355th high flow) of $1.564m^3/s$. The conclusion appeared that the effect of increasing instream flow at Gapcheon stream from Koe-gok reservoir was more higher than that from Geum-gok reservoir.

  • PDF

Evaluation of Eutrophication and Control Alternatives in Sejong Weir using EFDC Model (EFDC 모델에 의한 세종보의 부영양화 및 제어대책 평가)

  • Yun, Yeojeong;Jang, Eunji;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.548-561
    • /
    • 2018
  • The objectives of this study were to construct a three-dimensional (3D) hydrodynamic and water quality model (EFDC) for the river reach between the Daecheong dam and the Sejong weir, which are directly affected by Gap and Miho streams located in the middle of the Geum River, and to evaluate the trophic status and water quality improvement effect according to the flow control and pollutant load reduction scenarios. The EFDC model was calibrated with the field data including waterlevel, temperature and water quality collected from September, 2012 to April, 2013. The model showed a good agreement with the field data and adequately replicated the spatial and temporal variations of water surface elevation, temperature and water quality. Especially, it was confirmed that spatial distributions of nutrients and algae biomass have wide variation of transverse direction. Also, from the analysis of algal growth limiting factor, it was found that phosphorous loadings from Gap and Miho streams to Sejong weir induce eutrophication and algal bloom. The scenario of pollutant load reduction from Gap and Miho streams showed a significant effect on the improvement of water quality; 4.7~18.2% for Chl-a, 5.4~21.9% for TP at Cheongwon-1 site, and 4.2~ 17.3% for Chl-a and 4.7~19.4% for TP at Yeongi site. In addition, the eutrophication index value, identifying the tropic status of the river, was improved. Meanwhile, flow control of Daecheong Dam and Sejong weir showed little effect on the improvement of water quality; 1.5~2.4% for Chl-a, 2.5~ 3.8% for TP at Cheongwon-1 site, and 1.2~2.1% for Chl-a and 0.9~1.5% for TP at Yeongi site. Therefore, improvement of the water quality in Gap and Miho streams is essential and a prerequirement to meet the target water quality level of the study area.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.

Mesozooplankton Community Focusing on the Copepods in the Bulgap Stream, Yeonggwang, Korea (영광 불갑천에 서식하는 요각류를 중심으로 한 중형동물플랑크톤의 군집구조)

  • Lee, Dong-Ju;Lim, Dong-Il;Kwak, Inn-Sil;Soh, Ho-Young;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.355-366
    • /
    • 2008
  • The composition and abundance of mesozooplankton were studied from the five stations on the Bulgap stream near Yeonggwang, Jeollanamdo, Korea. Mesozooplankton samples were collected bimonthly in April, July, August, October, and December 2006 and February 2007. Total 44 taxa of mesozooplankton occurred with the highest abundance (31$\sim$53,230 indiv. m$^{-3}$) in October, and the fewest (16$\sim$97 indiv. m$^{-3}$) in December. Diversity index is the highest in July (1.072) and the lowest in October (0.386). The two copepod species, Pseudodiaptomus inopinus and Macrocyclops albidus were dominant during the study periods. A brackishwater species, P. inopinus occurred in the Bulgap stream during from August 2006 to February 2007. This species was the most dominant species (53,010 indiv. m$^{-3}$) in the stations that usually have low salinities (0.1$\sim$14.0 psu). M. albidus was predominated during from April to August 2006 in the freshwater stations.

A study on the Visual Preference of Keum River Sceneries at Different Water Level (금강 경관의 수면폭 변화에 따른 시각적 선호도 연구)

  • Yoo, Sang-Wan
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.273-282
    • /
    • 2006
  • This study has evaluated the visual preference factor of Keum river sceneries which could vary according to the change of water level while other scenic environment near by the river did not change. 1) At Gap Cheon site, the variances of the visual preferences for river scenery at different water level are determined as emotional, physical, aesthetic and individual factor. At Mujoo site, the variances of the visual preferences are determined as only two factors such as emotional and physical factors. Those factors show significant relations. All of the visual preferences are increased as the increase of preference factors. Also decreasing of preference factors result in decreasing of visual preferences. 2) In multiple regression model, both the Gap cheon site and Mujoo site show that the increase of emotional factor affect most to visual preference when other conditions are fixed. The physical factor affect less than the emotional factor. At Gap cheon site, the relative importance level which the preference factors contribute to the visual preference appears as the order of emotional, physical, aesthetic and individual factor. Emotional factor's importance level is 4.2 times greater than individual factor. At Mujoo site, the relative importance level which the preference factors contribute to the visual preference appears as the order of emotional and physical factor. The emotional factor's importance level is 1.1 times greater than physical factor. It is clearly indicate that the emotional factor is most important preference factor in both study sites. The factor analysis results of Keum river scenery at different water level using the visual evaluation method affect a lot to the quantification of river instream flow and water level.

  • PDF

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment (갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.867-880
    • /
    • 2006
  • Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT (SWAT을 이용한 기후변화의 수문학적 영향평가를 위한 Proxy-basin Differential Split-Sampling 및 Blind-Validation 테스트 적용)

  • Son, Kyong-Ho;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.969-982
    • /
    • 2008
  • As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins.

Evaluation of significant pollutant sources affecting water quality of the Geum River using principal component analysis (주성분분석(PCA) 방법을 이용한 금강 수질의 주요 오염원 영향 평가)

  • Legesse, Natnael Shiferaw;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.577-588
    • /
    • 2022
  • This study aims to identify the limiting nutrient for algal growth in the Geum River and the significant pollutant sources from the tributaries affecting the water quality and to provide a management alternative for an improvement of water quality. An eight-year of daily data (2013~2020) were collected from the Water Environment Information System (water.nier.go.kr) and Water Resources Management Information System (wamis.go.kr). 14 water quality variables were analyzed at five water quality monitoring stations in the Geum River (WQ1-WQ5). In the Geum River, the water quality variables, especially Chl-a vary greatly in downstream of the river. In the open weir gate operation, TP (total phosphorus) and water temperature greatly influence the growth of algae in downstream of the river. A correlation analysis was used to identify the relationship between variables and investigate the factor affecting algal growth in the Geum River. At the downstream station (WQ5), TP and Temp have shown a strong correlation with Chl-a, indicating they significantly influence the algal bloom. The principal component analysis (PCA) was applied to identify and prioritize the major pollutant sources of the two major tributaries of the river, Gab-cheon and Miho-cheon. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant, urban, and agricultural pollutions pollution are identified as significant pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. PCA seems to be effective in identifying water pollutant sources for the Geum River and its tributaries in detail and thus can be used to develop water quality management strategies.

A Study on Implementation of a 64 Channel Signal Generator / Analyzer Module (64채널 신호발생/분석 모듈 구현에 관한 연구)

  • 민경일;정갑천;최종현;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2609-2612
    • /
    • 2003
  • This paper describes a 64 channel signal generator/analyzer module that is useful for verification and testing of digital circuits. It can perform logic analyzer function and signal generator function at the same time. The 64 Channel module is implemented with single FPGA chip for miniaturization, and an USB interface is used to increase portability of the module. Multiple modules can be used in parallel for the verification of large scale circuits. Moreover, since the module is implemented as a PC based system, one can configure convenient GUI(Graphic User Interface) environment.

  • PDF