• Title/Summary/Keyword: 감정 형용사

Search Result 32, Processing Time 0.03 seconds

Synonym Emotional Adjectives in Coordination: Analyzing [Emotional Adjective + '-ko(and)'] + Emotional Adjective] Structures in Korean (감정형용사 유의어 결합 연구 -[[감정형용사 + '-고'] + 감정형용사] 구성-)

  • Park, JINA;Jeong, Yong-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.565-577
    • /
    • 2024
  • This discussion looked at how emotional adjectives are connected in the format [[emotional adjective + '-ko(and)'] + emotional adjective]. As a result, it was confirmed that there are quite a few cases in which two or more emotional adjectives are used to express emotions in Korean. This can help Korean learners understand and express the individual lexical meanings of emotional adjectives more clearly by identifying emotional adjectives that are used together with the corresponding configuration. It was believed that it could help Korean language learners express complex emotions or create rich emotional expressions when expressing their emotions in Korean. It is hoped that the examples and frequency of [[emotional adjective+'-ko(and)'+emotional adjective] shown in this discussion will be of some help in teaching and learning Korean emotional vocabulary.

A User Sentiment Classification Using Instagram image and text Analysis (인스타그램 이미지와 텍스트 분석을 통한 사용자 감정 분류)

  • Hong, Taekeun;Kim, Jeongin;Shin, Juhyun
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • According to increasing SNS users and developing smart devices like smart phone and tablet PC recently, many techniques to classify user emotions with social network information are researching briskly. The use emotion classification stands for distinguishing its emotion with text and images listed on his/her SNS. This paper suggests a method to classify user emotions through sampling a value of a representative figure on a trigonometrical function, a representative adjective on text, and a canny algorithm on images. The sampling representative adjective on text is selected as one of high frequency in the samplings and measured values of positive-negative by SentiWordNet. Figures sampled on images are selected as the representative in figures; triangle, quadrangle, and circle as well as classified user emotions by measuring pleasure-unpleased values as a type of figures and inclines. Finally, this is re-defined as x-y graph that represents pleasure-unpleased and positive-negative values with wheel of emotions by Plutchik. Also, we are anticipating for applying user-customized service through classifying user emotions on wheel of emotions by Plutchik that is redefined the representative adjectives and figures.

Design of Adjective Thesaurus (형용사 시소러스 설계에 관한 연구)

  • 유명희;최석두
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2002.08a
    • /
    • pp.197-204
    • /
    • 2002
  • 형용사는 감성 및 감정검색을 위한 색인에서 주로 사용된다. 이를 위해서는 형용사의 개념관계를 파악하고 표현하는 것이 중요한 일이다. 본 연구에서는 형용사의 개념관계를 표현하기 위하여 형용사의 특성, 관련 개념구조를 고찰하고, 아울러 구조화, 관계, 표시방법, 배열 등을 고려하여 형용사 시소러스를 설계하였다.

  • PDF

Emotion Recognition of Sentence by using Speech Act (화행 정보를 활용한 문장에서의 감정 인식)

  • Kim, Ki-Tai;Ryu, Pum-Mo;Choi, Yong-Seok;Lee, Sang-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.199-200
    • /
    • 2009
  • 자연스러운 대화가 가능한 인공지능 대화시스템을 구축하기 위해서는 사용자의 문장에 내재된 감정을 이해할 수 있는 시스템이어야만 한다. 또한 상호간의 대화를 통해서 풍겨지는 분위기를 파악할 수 있다면 사용자에게 마치 인간과 대화하는 듯한 자연스러움을 느끼도록 할 수 있을 것이다. 실제 대화에서 감정은 언어적인 표현뿐 아니라 비언어적인 표현으로도 표출되지만, 본 논문은 텍스트 상에서 언어적으로 표현되는 감정 정보를 인식하는데 초점을 둔다. 언어적인 표현으로 한정하여 감정을 인식하는 경우에는 감정을 직접 표현하고 있는 형용사나 동사가 중심이 된다. 본 논문에서는 형용사를 중심으로 하여 화행 정보와 결합하여 감정을 인식하는 시스템에 대해서 제시하고자 한다. 이 논문은 문장에 내재되어 있는 숨겨진 감정이나 분위기 등을 파악하기 위한 연구에 대한 선행 연구로서 텍스트 상에서 직접 드러나는 감정을 인식하기 위한 방법을 제안한다.

  • PDF

Classification System for Emotional Verbs and Adjectives (감정동사 및 감정형용사 분류에 관한 연구)

  • 장효진
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.29-34
    • /
    • 2001
  • 영상자료 및 소리자료의 색인과 검색을 위해서는 감정동사 및 감정형용사 등의 감정 어휘를 필요로 한다. 그러나 감정어휘는 그 뉘앙스가 미묘하여 분명한 분류체계가 없이는 체계적인 정리가 불가능하다. 이에 따라 본 연구에서는 국어학과 분류사전의 분류체계를 고찰하고 새로운 감정어휘의 분류방안을 연구하였으며, 감정에 따른 기쁨, 슬픔, 놀람, 공포, 혐오, 분노의 6가지 기본유형을 제시하였다.

  • PDF

Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon (구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축)

  • Kang, Seung-Shik;Won, HyeJin;Lee, Minhaeng
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.144-151
    • /
    • 2020
  • In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

Fiber Fashion Design Recommender Agent System using the Prediction of User-Preference and Textile based Collaborative Filtering Technique (사용자 선호도 예측과 Textile 기반의 협력적 필터링 기술을 이용한 섬유패션 디자인 추천 에이전트)

  • 정경용;김진현;나영주
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.224-228
    • /
    • 2002
  • 제품의 품질 및 가격 뿐만 아니라 물질적 풍요로움과 더불어 다변화 되어가는 생활 환경 속에서 소비자의 감성과 선호도를 파악하는 것은 제품 판매 전략의 중요한 성공요소가 되고 있다. 이를 위하여 제품의 기능적 측면 뿐만 아니라 개개인의 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 연구에서는 소재 개발의 프로세스가 고객 중심으로 변화하는 것에 대응하여 사용자의 감성과 선호도를 중심으로 소재를 개발하는 방법의 하나로 협력적 필터링 개인화 기법을 응용하여 섬유 패션 디자인 추천 시스템을 제안한다. Textile 기반의 협력적 필터링 시스템에서 예측에 사용될 이웃의 수를 결정하기 위해서 Representative Attribute-Neighborhood를 사용한다. 이웃들간의 사용자 유사도 가중치는 피어슨 상관 계수(Pearson Correlation Coefficient)를 사용한다. 소재에 대한 사용자의 감성이나 선호도에 대한 Textile의 대표 감성 형용사를 추출함으로써 소재 개발을 위한 감성 형용사 데이터 베이스를 구축한다. 구축된 감성 형용사 데이터 베이스를 기반으로 성향이 비슷한 사용자에게 Textile을 추천한다. 사용자 선호도 예측과 Textile 기반의 협력적 필터링 기술을 이용한 섬유 패션 디자인 추천 에이전트를 구축하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.

  • PDF

An Expansion of Affective Image Access Points Based on Users' Response on Image (이용자 반응 기반 이미지 감정 접근점 확장에 관한 연구)

  • Chung, Eun Kyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.3
    • /
    • pp.101-118
    • /
    • 2014
  • Given the context of rapid developing ubiquitous computing environment, it is imperative for users to search and use images based on affective meanings. However, it has been difficult to index affective meanings of image since emotions of image are substantially subjective and highly abstract. In addition, utilizing low level features of image for indexing affective meanings of image has been limited for high level concepts of image. To facilitate the access points of affective meanings of image, this study aims to utilize user-provided responses of images. For a data set, emotional words are collected and cleaned from twenty participants with a set of fifteen images, three images for each of basic emotions, love, sad, fear, anger, and happy. A total of 399 unique emotion words are revealed and 1,093 times appeared in this data set. Through co-word analysis and network analysis of emotional words from users' responses, this study demonstrates expanded word sets for five basic emotions. The expanded word sets are characterized with adjective expression and action/behavior expression.