• Title, Summary, Keyword: 감정 분류

Search Result 366, Processing Time 0.035 seconds

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

Using Non-Lexical Features for Tweet Sentiment Classificaion (트윗 감정 분류를 위한 비어휘자질의 사용)

  • Hong, Cho-Hee;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.160-162
    • /
    • 2012
  • 문서를 대상으로 한 다양한 감정 분류 연구가 진행되어 왔으며, 최근에는 트윗 감정 분류에 그대로 적용되고 있다. 그러나 트윗은 일반 문서와 다르게 몇 가지의 독특한 특징을 갖고 있어 좋은 성능을 보이지 못하고 있다. 본 논문에서는 기계학습을 기반으로 트윗의 특징과 트윗 사용자 정보 자질을 사용한 실험으로 트윗 감정 분류 성능의 영향을 확인하였다. 실험 결과 트윗에 포함된 이모티콘 감정 극성과, 사용자 성향 극성 자질은 트윗 감정 분류 모델의 성능 향상에 기여를 하는 것을 알 수 있었다.

  • PDF

Classification System for Emotional Verbs and Adjectives (감정동사 및 감정형용사 분류에 관한 연구)

  • 장효진
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.29-34
    • /
    • 2001
  • 영상자료 및 소리자료의 색인과 검색을 위해서는 감정동사 및 감정형용사 등의 감정 어휘를 필요로 한다. 그러나 감정어휘는 그 뉘앙스가 미묘하여 분명한 분류체계가 없이는 체계적인 정리가 불가능하다. 이에 따라 본 연구에서는 국어학과 분류사전의 분류체계를 고찰하고 새로운 감정어휘의 분류방안을 연구하였으며, 감정에 따른 기쁨, 슬픔, 놀람, 공포, 혐오, 분노의 6가지 기본유형을 제시하였다.

  • PDF

A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification (한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF

Emotion and Speech Act classification in Dialogue using Multitask Learning (대화에서 멀티태스크 학습을 이용한 감정 및 화행 분류)

  • Shin, Chang-Uk;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.532-536
    • /
    • 2018
  • 심층인공신경망을 이용한 대화 모델링 연구가 활발하게 진행되고 있다. 본 논문에서는 대화에서 발화의 감정과 화행을 분류하기 위해 멀티태스크(multitask) 학습을 이용한 End-to-End 시스템을 제안한다. 우리는 감정과 화행을 동시에 분류하는 시스템을 개발하기 위해 멀티태스크 학습을 수행한다. 또한 불균형 범주 분류를 위해 계단식분류(cascaded classification) 구조를 사용하였다. 일상대화 데이터셋을 사용하여 실험을 수행하였고 macro average precision으로 성능을 측정하여 감정 분류 60.43%, 화행 분류 74.29%를 각각 달성하였다. 이는 baseline 모델 대비 각각 29.00%, 1.54% 향상된 성능이다. 본 논문에서는 제안하는 구조를 이용하여, 발화의 감정 및 화행 분류가 End-to-End 방식으로 모델링 가능함을 보였다. 그리고, 두 분류 문제를 하나의 구조로 적절히 학습하기 위한 방법과 분류 문제에서의 범주 불균형 문제를 해결하기 위한 분류 방법을 제시하였다.

  • PDF

A Sentence Sentiment Classification reflecting Formal and Informal Vocabulary Information (형식적 및 비형식적 어휘 정보를 반영한 문장 감정 분류)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.325-332
    • /
    • 2011
  • Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics (일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

Emotion Classification in Song Lyrics using the Emotion Ontology (감정 온톨로지를 활용한 노래 가사의 감정 분류)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.340-343
    • /
    • 2011
  • 음악 감정 분류에 관한 기존의 연구들은 템포, 박자, 음정, 음표, 리듬 등과 같은 음악의 멜로디와 관련된 자질을 이용하여 음악 감정을 분류하였다. 그러나 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 가사의 내용에 따라 음악에 대하여 청자가 느끼는 감정이 크게 다르다. 본 논문에서는 감정 온톨로지를 활용하여 노래 가사를 감정에 따라 분류하는 방법에 대하여 제안한다. 기구축 된 감정 온톨로지를 바탕으로 네 가지 통사적 규칙을 적용하여 노래 가사로부터 감정 자질을 추출한다. 추출된 감정 자질을 이용하여 Naive Bayes, HMM, SVM과 같은 기계학습 기법을 이용하여 8개 감정 그룹에 대해 58.8%의 정확도를 보였다.

  • PDF