• 제목/요약/키워드: 감정 마이닝

검색결과 85건 처리시간 0.025초

오피니언 마이닝을 활용한 블로그의 극성 분류 기법 (The Blog Polarity Classification Technique using Opinion Mining)

  • 이종혁;김원상;박제원;최재현
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권4호
    • /
    • pp.559-568
    • /
    • 2014
  • 기존의 감정분석을 통한 극성 분류는 주로 평점을 기반으로 하는 상품평을 기준으로 문장규칙을 이용하여 분석해왔다. 이러한 분석방법은 평점이 없는 블로그 같은 경우 적용되기 어려움 점이 있고 댓글 아르바이트나 관리자에 의해 상품평이 조작될 가능성이 있어서 상품평 만으로는 상품, 매장에 대한 의견을 파악하기에는 어려움이 있다. 이러한 문제점을 고려할 때 개인들의 솔직한 의견이 담겨 있는 블로그를 분석하여 극성을 분류하면 상품, 매장에 대한 올바른 이해가 가능하다. 본 논문은 도메인별로 블로그 글에 대한 고빈도 단어를 추출하여 주제어를 선정하고, 선정된 주제어를 기준으로 제안하는 감정분석 기법을 적용하여 블로그 글에 대한 극성을 분류한다. 감정분석 기법의 성능을 평가하기 위하여 정보 검색 분야에서 사용되는 측정지표 Precision, Recall, F-score를 사용하여 본 연구의 극성 분류기법의 유용성을 검증한다. 평가 결과 기존의 상품평을 문장규칙을 이용하여 분석하여 극성 분류를 하는 기법들에 비해서 제안한 감정분석 기법을 적용할 경우에 우수한 성능으로 극성 분류를 하는 것으로 나타났다.

감정분석과 오피니언 마이닝: 2007-2016 (Sentiment Analysis and Opinion Mining: literature analysis during 2007-2016)

  • 이가베;이효맹;유효문;강선경;이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.160-161
    • /
    • 2017
  • 감정 분석 및 의견 마이닝은 지난 15 년 동안 연구 분야가 등장하면서 사람들의 의견, 감정, 평가, 태도 및 감정을 글쓰기 언어의 광산 및 감정 분석 (OMSA)에서 분석하고 계산 방법론을 제공하는 분야입니다 주로 비 구조화 된 데이터를 처리하여 의견을 추출하고 그들의 감정을 파악합니다. 상대적으로 새롭지 만 빠르게 성장하는 연구 분야는이 기간 동안 많이 바뀌 었습니다. 이 논문은 2007-2016 년 동안 OMSA에서 수행 된 연구 작업의 과학적 분석을 제시합니다. 문헌 분석을 위해 Web of Science (WoS) 데이터베이스에서 색인 된 연구 출판물을 입력 자료로 사용합니다. 출판 데이터는 계산 방식으로 분석되어 연도 별 출판 패턴, 출판물, 연구 분야의 성장률을 파악합니다. 이 간행물에서 사용되는 대중적 접근법 (기계 학습 및 어휘 기반), OMSA의 주요 응용 분야 및 정서 분석 작업의 수준 (문서, 문장 또는 측면 수준)을 식별하기 위해 데이터에 대한보다 상세한 수동 분석도 수행됩니다.

  • PDF

자질 가중치의 재조정을 통한 감정 분류 (Sentiment Classification Using Feature Reweighting)

  • 서형원;김형철;김재훈;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.145-150
    • /
    • 2009
  • 이 논문은 한글 뉴스 기사의 댓글에 대한 감정 분류 방법을 제안한다. 제안된 방법은 기계학습을 이용하는데 본 논문에서는 자질의 가중치를 재조정하는 좀 색다른 방법을 제안한다. 일반적으로 댓글은 독자들이 특정 기사에 대해서 어떠한 감정을 가지고 있는지를 파악하는 중요한 단서가 된다. 그런데 독자들의 감정은 가사에 어떤 분야에 속하느냐에 영향을 받는다. 예를 들면 정치 기사는 부정적인 댓글은 많이 포함하고 있으며 인물 기사는 긍정적인 기사를 많이 포함한다. 이 논문은 이와 같은 댓글의 속성을 이용해서 기사의 원문과 기사의 분야 정보를 이용하여 가중치를 조정한다. 제안된 시스템의 성능을 평가하기 위해 신문 기사와 댓글을 수집하여 감정 말뭉치를 구축하였으며 감정자질을 추출하기 위해 감정 사전을 구축하였다. 제안된 시스템의 $F_1$ 척도는 92.2%였으며 원문의 감정 단어와 분야 정보가 댓글의 감정을 분류하는데 중요한 자질임을 알 수 있었다.

  • PDF

개인감정분석과 마이닝 (Personal Sentiment Analysis and Opinion Mining)

  • 이현창;신성윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.344-345
    • /
    • 2017
  • Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas.

  • PDF

심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류 (Empirical Sentiment Classification Using Psychological Emotions and Social Web Data)

  • 장문수
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.563-569
    • /
    • 2012
  • 소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.

오피니언 마이닝 기술을 이용한 효율적 상품평 검색 기법 (An Efficient Search Method of Product Reviews using Opinion Mining Techniques)

  • 윤홍준;김한준;장재영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권2호
    • /
    • pp.222-226
    • /
    • 2010
  • 급속한 전자상거래의 발전으로 인하여 온라인상으로 상품을 구매하고 그에 대한 평가를 작성하는 것이 일반적인 구매 패턴이 되었다. 구매자들의 상품평은 다른 잠재적인 소비자들의 상품 구입을 이끌어내는데 큰 동기가 된다. 하지만 온라인 쇼핑몰에서는 상품평의 성질에 부합하는 순위를 부여하지 않기 때문에, 사용자가 구입 결정을 위하여 수많은 상품평에 포함된 의견들을 효과적으로 검토하기는 쉽지 않다. 일반적으로 상품평은 감정적이며 주관적인 의견을 포함하고 있다. 그래서 이러한 상품평에 순위를 부여하는 방법은 일반 웹 검색과는 달라야 한다. 본 논문에서는 오피니언 마이닝 기술을 이용하여, 사용자의 의도에 따라 상품평 데이터에 대해 순위를 결정하는 기법을 제안한다. 제안된 기법은 사용자의 검색어뿐만 아니라 상품평 내에 주관적인 의견의 포함 여부 및 감정 극성의 엔트로피 등을 고려하여 상품평의 가치를 판단하였다. 또한 실험을 통하여 제안된 기법의 우수성을 검증하였다.

텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구 (Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis)

  • 김재환;이재문
    • 한국콘텐츠학회논문지
    • /
    • 제18권6호
    • /
    • pp.217-234
    • /
    • 2018
  • 본 연구는 국내외 스포츠용품 브랜드에 대한 빅데이터 분석을 실시하였다. 이를 위해 소셜 매트릭스 프로그램인 텍스톰과 패션데이터 분석 플랫폼인 MISP를 통해 텍스트 마이닝, TF-IDF, 오피니언 마이닝, 관심도 그래프를 실시하였으며, 스포츠브랜드에 대한 최근 인식을 살펴보기 위해 2017년 1월 1일부터 2017년 12월 31일까지 1년간을 연구대상 기간으로 한정하였다. 분석 결과, 첫째, 각 브랜드를 대표하는 상품을 확인할 수 있었다. 둘째, 각 브랜드를 대표하는 마케팅을 확인할 수 있었다. 셋째, 각 브랜드에서 공통적으로 추출된 단어를 확인할 수 있었다. 넷째, 각 브랜드의 긍정 및 부정에 대한 감정을 확인할 수 있었다.

감성분석 연구 동향 (Sentimental Analysis Research Trends)

  • 이정훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.358-361
    • /
    • 2018
  • 비정형 데이터 증가로 텍스트 마이닝을 사용해 데이터를 분석하는 연구가 주목받고 있다. 감성분석은 단어와 문맥을 분석하여 텍스트의 감정을 파악하는 기술이다. 본 논문에서는 감성분석 연구 동향, 적용분야, 방법론에 관해 분석하고 기술하려 한다. 감성분석은 2001년 채팅의 감정을 분석하면서 시작되었고, 2008년부터 본격적으로 연구가 진행되었다. 감성분석은 SNS, 상품 후기, 영화평, 뉴스 기사 등 다양한 데이터에 적용되고 있으며, 사회이슈 찬반 분석과 장소 선호도 분석 등 다양한 연구에서 사용되었다. 감성분석 방법은 감성사전을 이용하는 방식과 기계학습을 사용하는 방식으로 나누어지며 분석 방법을 발전시키기 위한 연구가 진행되고 있다.

오피니언 마이닝을 이용한 한글 트윗 감정분석 시스템 (The Hangul Tweet Sentiment Analysis System using Opinion Mining)

  • 어문선;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1145-1146
    • /
    • 2013
  • 인터넷과 스마트폰의 발달로 SNS서비스의 사용자와 데이터가 활발하게 증가하고 있다. 이로 인하여 SNS 데이터의 가치와 신뢰성이 점점 증가하고 있으며, 이러한 추세에 따라 여러 연구와 실험을 통하여 데이터를 분석하고 분석 결과를 제공하는 서비스가 증가하고 있다. 본 논문에서는 이러한 배경을 바탕으로 특정 키워드를 포함하고 있는 한글 트윗을 검색하여 해당 트윗에 대한 연관 키워드와 감정 키워드를 분석해서 출력해주는 시스템을 개발한다.

문단 분석을 통한 문서 내의 감정 예측 (Emotion Prediction of Document using Paragraph Analysis)

  • 김진수
    • 디지털융복합연구
    • /
    • 제12권12호
    • /
    • pp.249-255
    • /
    • 2014
  • 최근 트위터, 페이스북 등과 같은 소셜 네트워크 서비스(Social Network Service, SNS)의 확산과 더불어 정보의 생성 및 공유가 활발히 이루어지고 있다. 이러한 SNS 매체들을 통해 생산하는 많은 데이터를 활용하기 위해 축적된 데이터로부터 의미 있는 정보를 추출해 내는 기술의 필요성이 대두되고 있으며, 데이터 마이닝 기법을 이용하여 의미있는 지식을 찾아낸다. 특히, 다양한 형태의 방대한 자료들로부터 표출되는 의견, 정책, 성향, 감정 등 대중의 집단지성에 나타난 일반적인 감정분석이 활용되고 있다. 본 논문에서는 대중들이 SNS를 통해 작성한 사용자들의 짧은 문장에 함축된 단어와 단어들 간의 연관성을 이용하여 문장 내 감정 상태를 예측하고 사용자의 감정에 따른 적절한 답변이나 추출한 감정과 유사한 트윗글이나 영화 등을 추천하는데 사용될 수 있는 방법을 제안한다.