• 제목/요약/키워드: 감정의 강도

검색결과 168건 처리시간 0.024초

챗봇의 효과적 정서적 지지를 위한 한국어 대화 감정 강도 예측 모델 개발 (On the Predictive Model for Emotion Intensity Improving the Efficacy of Emotionally Supportive Chat)

  • 정세림;노유진;오은석;김아연;홍혜진;이지항
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.656-659
    • /
    • 2023
  • 정서적 지원 대화를 위한 챗봇 개발 시, 사용자의 챗봇에 대한 사용성 및 대화 적절성을 높이기 위해서는 사용자 감정에 적합한 지원 콘텐츠를 제공하는 것이 중요하다. 이를 위해, 본 논문은 사용자 입력 텍스트의 감정 강도 예측 모델을 제안하고, 사용자 발화 맞춤형 정서적 지원 대화에 적용하고자 한다. 먼저 입력된 한국어 문장에서 키워드를 추출한 뒤, 이를 각성도 (arousal)과 긍정부 정도(valence) 공간에 투영하여 키워드가 내포하는 각성도-긍정부정도에 가장 근접한 감정을 예측하였다. 뿐만 아니라, 입력된 전체 문장에 대한 감정 강도를 추가로 예측하여, 핵심 감정 강도 - 문맥상 감정강도를 모두 추출하였다. 이러한 통섭적 감정 강도 지수들은 사용자 감정에 따른 최적 지원 전략 선택 및 최적 대화 콘텐츠 생성에 공헌할 것으로 기대한다.

로봇 감정의 강도를 표현하기 위한 LED 의 색과 깜빡임 제어 (Color and Blinking Control to Support Facial Expression of Robot for Emotional Intensity)

  • 김민규;이희승;박정우;조수훈;정명진
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.547-552
    • /
    • 2008
  • 앞으로 로봇은 더욱 사람과 가까워 질 것이고, 따라서 사람과 로봇간의 상호작용도 활발해질 것이다. 이 때 직관적인 소통수단이 필수적이기 때문에, 로봇이 표정을 통해 감정을 표현할 수 있도록 하는 연구가 활발히 진행되어왔다. 기존에는 얼굴 표정을 주로 이용하였는데, 사람처럼 감정의 강도를 표현하기 위해서는 얼굴 외의 다른 방법도 필요하다. 로봇이 감정의 강도를 표현하기 위해서는 팔의 제스처, 움직임, 소리, 색깔 등을 이용할 수 있다. 본 논문에서는 LED 를 이용할 수 있도록 색과 깜빡임에 대해 연구하였다. 색깔과 감정의 관계에 대해서는 기존에 연구가 많이 되어 있지만, 실제로 로봇에 구현하기에는 정량적 자료가 부족하여 어려움이 있다. 본 논문에서는 6 가지 기본 감정(화남, 슬픔, 혐오, 놀람, 기쁨, 공포)을 효과적으로 나타낼 수 있는 색과 깜빡임 주기를 결정하고, 아바타를 이용하여 감정의 강도를 설문조사 하였다. 결과적으로, 슬픔, 혐오, 화남의 경우 색깔과 깜빡임을 통해 감정의 강도를 높일 수 있었다. 공포, 기쁨, 놀람의 경우 색깔과 깜빡임이 감정 인식에 큰 영향을 미치지 못했는데, 이는 그 감정에 해당하는 색깔이나 깜빡임을 수정해서 개선할 수 있을 것이다.

  • PDF

문장 감정 강도를 반영한 개선된 자질 가중치 기법 기반의 문서 감정 분류 시스템 (A Document Sentiment Classification System Based on the Feature Weighting Method Improved by Measuring Sentence Sentiment Intensity)

  • 황재원;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권6호
    • /
    • pp.491-497
    • /
    • 2009
  • 본 논문은 한국어 문서감정 분류에서 각 문장의 감정 정도의 차이를 고려하여 자질의 가중치를 계산하는 방법을 제안한다. 감정자질은 어휘 자원으로서 감정을 가지는 단어들의 집합이며, 학습데이터를 이용하여 이 감정자질의 카이제곱 통계량 값(${\chi}^2$ statistic)을 얻을 수 있다. 이렇게 얻어진 카이제곱 통계량 값으로 문서에서 출현한 각 문장의 감정강도를 수치화 할 수 있다. 각 문장의 감정강도는 문서에서 가장 강한 감정을 가진 문장에 근한 비율로 계산되며, 이 값을 TF-IDF 가중치 기법에 적용하여 최종적인 자질의 가중치를 결정하게 된다. 그리고 일반적으로 문서 분류에서 뛰어난 성능을 보여주는 지지벡터기계(Support Vector Machine)를 사용하여 기계학습을 수행한 후 성능을 평가한다. 성능평가에서 제안된 기법은 문장감정의 강도를 고려하지 않은 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 2.0%의 성능향상을 얻었다.

한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법 (A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF

구어체 정서표현에 있어서의 음성 특성 연구 (A study on the vocal characteristics of spoken emotional expressions)

  • 이수정;김명재;김정수
    • 감성과학
    • /
    • 제2권2호
    • /
    • pp.53-66
    • /
    • 1999
  • 현 연구에서는 음성합성의 기초자료 수집을 위하여 대화체 감정표현의 음성적인 패러미터를 찾아내려고 시도하였다. 이를 이하여 일단 가장 자주 사용되는 대화체 감정표현자료가 수집되었고 이들 표현을 발화할 때 가장 주의를 기울이는 발성의 특징들이 탐색되었다. 구어체적 감정표현의 타당한 데이터베이스를 작성하기 위하여 20대와 30대로 연령층을 구분하여 자료를 수집, 분석하였다. 그 결과 다양한 감정표현의 발화특성들은 음의 강도, 강도변화, 그리고 음색이 중요한 기준으로 작용하는 것으로 나타났다. 다차원분석 결과 산출된 20대와 30대의 음성표현이 도면은 개별정서들이 음성의 잠재차원 상에서 상당한 일관된 특징을 지님을 보여 주었다.

  • PDF

구어체 정서표현에 있어서의 음성 특성 연구 (A study on the vocal characteristics of spoken emotional expressions)

  • 이수정
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 추계학술대회 논문집
    • /
    • pp.277-291
    • /
    • 1999
  • 현 연구에서는 음성합성의 기초자료 수집을 위하여 대화체 감정표현의 음성적인 패러미터를 찾아내려고 시도하였다. 이를 위하여 일단 가장 자주 사용되는 대화체 감정 표현자료가 수집되었고 이들 표현을 발화할 때 가장 주의를 기울이는 발성의 특징들이 탐색되었다. 구어체적 감정표현의 타당한 데이타베이스를 작성하기 위하여 20대와 30로 연령층을 구분하여 자료를 수집, 분석하였다. 그 결과 다양한 감정표현의 발화특성들은 음의 강도, 강도변화, 그리고 음색이 중요한 기준으로 작용하는 것으로 나타났다. 다차원 분석 결과 산출된 20대와 30대의 음성표현의 도면은 개별정서들이 음성의 잠재차원 상에서 상당한 일관된 특징을 지님을 보여 주었다.

  • PDF

일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법 (A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF

농인 청소년의 감정 경험 및 표현 특성 (Experiencing and Expression of Deaf Adolescents)

  • 박지은;김은예;장은정;정이내;음영지;손진훈
    • 감성과학
    • /
    • 제19권3호
    • /
    • pp.51-58
    • /
    • 2016
  • 본 연구에서는 농인들이 감정을 경험하고 표현할 때 그 특성이 청인과 어떻게 다른지 알아보았다. 이를 위해 농인과 청인 청소년들을 대상으로 세 가지 감정을 유발 시키면서 얼굴 표정을 녹화하였다. 감정의 경험 내용은 자기보고식 척도를 사용하여 측정되었고, 감정의 표현은 녹화된 얼굴 표정을 평정하였다. 두 집단 간에 경험 감정 속성이 동일한지 그리고 본인이 보고한 감정과 타인이 평가한 감정이 일치하는지를 비교하였다. 경험 감정의 유형 및 강도 점수는 청인과 농인 집단 간에 통계적으로 유의한 차이가 없었다. 그러나 표현 감정 평정 결과는 기쁨에서 두 집단 간에 유의한 차이를 보였다. 청인들의 기쁜 표정은 본인이 느낀 강도보다 타인에게 더 강하게 평가되는 반면, 농인들은 본인이 느낀 기쁨의 강도보다 훨씬 낮게 평가되었다. 이는 농인들의 감정 상태를 청인들은 알아차리지 못할 수 있다는 의미이다. 이러한 결과는 농인 청소년들의 감정 표출 방식이 같은 또래의 청인들과 달라 서로간의 감정적 교류나 대인관계에 어려움을 겪을 수 있음을 시사한다.

물리치료사 및 작업치료사의 감정노동 수준에 미치는 요인 (Factors Affecting Emotional Labor among Physical Therapists and Occupational Therapists)

  • 허윤정;이석민
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.237-247
    • /
    • 2019
  • 본 연구의 목적은 물리치료사 및 작업치료사의 감정노동 수준과 강도를 평가하고 이에 미치는 요인을 알아보았다. 전국 물리치료사 및 작업치료사를 대상으로 자기기입식 설문지를 이용한 단면적 조사연구(cross-sectional study)를 실시하였다. 총 2,000부의 설문지를 배포하여 1,500부(75%)의 설문지를 회수하였고, 이 중 중복으로 답변하거나 답변이 누락된 126부를 제외하고 1,374부(68.7%)의 설문지를 최종 분석하였다. 감정노동의 강도에 미치는 요인을 파악하기 위해 다중선형 회귀분석을 수행하였다. 분석결과, '감정조절의 요구 및 규제', '고객 응대의 과부하 및 갈등', '감정부조화 및 손상' 하부영역에서 고위험군은 각각 29.4%, 19.0%, 22.0% 이었으며, 특히 감정노동의 강도를 평가하는 '감정조절의 요구 및 규제', '고객 응대의 과부하 및 갈등', '감정부조화 및 손상'에서 감정노동의 위험군은 여성, 작업치료사, 주간 49시간 이상 근무, 하루 치료 환자 수 15명 이상으로 파악되었다. 이에 따라 물리치료사 및 작업치료사를 대상으로 정기적으로 위험군을 스크리닝 하고, 초과근무시간 제한과 적절한 환자 수 배정 등 치료사의 근로환경 조성을 통해 감정노동의 강도를 관리할 수 있겠다. 본 연구를 통하여 감정노동으로 인한 부정적 영향을 완화시키고, 감정노동을 중재할 수 있는 근거와 방안이 마련되어야 할 것이다.

감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템 (A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words)

  • 황재원;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.317-322
    • /
    • 2010
  • 본 논문은 감정단어(Sentiment Word)의 의미적 특성을 반영하여 한국어 문서 감정분류 시스템의 성능을 향상시킬 수 있는 방법을 제안한다. 감정단어는 감정을 가지는 단어를 의미하며, 감정단어들의 집합은 감정자질(Sentiment Feature)로써 감정분류를 위한 중요한 어휘 자원이다. 감정자질은 일반적으로 사용될 때와 특정 영역(Domain)에서 사용될 때에 그 감정 정도의 차이를 가진다. 감정자질이 일반적으로 사용될 때 그 감정 정도는 검색 엔진을 통해 얻을 수 있는 스니핏(Snippet)을 통해 추정할 수 있으며, 특정 영역에서 사용될 때의 감정 정도는 실험 말뭉치를 이용하여 추정할 수 있다. 이렇게 추정된 감정자질의 감정 정도 수치를 의미지향성이라고 하며, 문서내의 문장의 감정 강도를 추정하기 위해 이용된다. 문장의 감정 강도가 추정되면 문장 감정 강도를 감정자질의 가중치에 반영하게 된다. 본 논문은 지지 벡터 기계(Support Vector Machine)를 이용하여 일반적, 영역 의존적, 일반적/영역 의존적 의미지향성을 반영한 경우에 대해 성능을 평가한다. 평가 결과, 앞의 3가지 경우에 모두 성능 향상을 얻었으며 일반적/영역 의존적 의미지향성을 반영한 경우, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능 향상을 얻을 수 있었다.