Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.79-82
/
2000
감정 표현 음성을 합성하기 위하여 본 연구에서는 감정 음성 데이터의 피치와 지속시간의 음절 유형별 및 어절 내 음절 위치에 따른 변화를 분석하였고, 스펙트럼 포락이 감정 변화에 어떤 영향을 미치는지를 분석하였다. 그 결과, 피치와 지속시간의 음절 유형별, 어절 내 음절 위치에 따른 변화와, 스펙트럼 포락 등도 감정 변화에 영향을 미치는 것으로 나타났다. 또한, 감정 음성의 음향학적 분석 결과를 적용하여 감정 음성을 합성하고 평가하기 위하여, 평상 음성의 음운 및 운율 파라미터 (피치, 에너지, 지속시간, 스펙트럼 포락)를 조절함으로써 감정 음성을 생성하는 감정 편집기를 구현하였다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.8
/
pp.3992-3998
/
2013
This paper is related to the method of adding a emotional speech corpus to a high-quality large corpus based speech synthesizer, and generating various synthesized speech. We made the emotional speech corpus as a form which can be used in waveform concatenated speech synthesizer, and have implemented the speech synthesizer that can be generated various synthesized speech through the same synthetic unit selection process of normal speech synthesizer. We used a markup language for emotional input text. Emotional speech is generated when the input text is matched as much as the length of intonation phrase in emotional speech corpus, but in the other case normal speech is generated. The BIs(Break Index) of emotional speech is more irregular than normal speech. Therefore, it becomes difficult to use the BIs generated in a synthesizer as it is. In order to solve this problem we applied the Variable Break[3] modeling. We used the Japanese speech synthesizer for experiment. As a result we obtained the natural emotional synthesized speech using the break prediction module for normal speech synthesize.
본 논문에서는 감정 표현 음성 합성 시스템을 구현하기 위해서, 감정 음성 데이터베이스의 음향학적 특징인 피치, 에너지, 지속시간, 스펙트럼 포락에 대해 분석한 결과와 문법적 요소인 품사에 따른 감정 음성 데이터의 피치 변화를 분석하였다. 분석 결과, 기본 주파수, 에너지, 지속시간, 스펙트럼 포락은 감정 표현에 중요한 영향을 미치는 것으로 나타났으며, 전반적으로 화남과 기쁨의 감정이 평상과 슬픔의 감정 보다 피치 및 에너지의 변화가 크게 나타났으며, 특히 기쁜 감정의 경우 부사, 관형사, 연결어미, 조사, 접미사에서 피치 변화가 많았으며, 화난 감정의 경우, 관형사, 명사, 용언, 접미사에서 피치 변화가 높게 나타났다. 이러한 분석 결과를 적용해 감정 음성을 합성하기 위하여, 평상 음성에 각 감정 음성의 운율 요소를 적용하여 감정 음성을 합성하여 평가한 결과, 기쁜 감정은 기본 주파수의 변화에 의해 86.7%, 화난 감정은 에너지의 변화에 의해 91%, 슬픈 감정은 음절지속시간의 변화에 의해 76.7%가 각각 올바른 감정으로 인지되었다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.350-355
/
1998
감정을 표현하는 음성 합성 시스템을 구현하기 위해서는 감정음성에 대한 분석이 필요하다. 본 논문에선,s 평상, 화남, 기쁨, 슬픔의 네 가지 감정에 대한 음성 데이터에 대해 음절 세그먼트, 라벨링을 행한 감정 음성 데이터베이스를 구축하였고, 감정표현이 음성에 영향을 미치는 요인에대하여, 운율, 음운적인 요소로 나누어 분석하였다. 또한 기본 주파수, 에너지, 음절지속시간에 대한 분석과 감정 음성의기본 주파수, 에너지, 음절지속시간, 스펙트럼 포락의 인지 정도를 측정하기 위하여 평상 음성에 감정 음성의 운율 요소를 적용하는 음성을 합성하여 ABX 방법으로 평가하였다. 그 결과, 기본 주파수의변화가 73.3%, 음절지속시간은 43.3% 로 올바른 감정으로 인지되었으며, 특히 슬픈 감정에서 음절지속시간은 76.6%가 올바르게 감정을 나타내는 것으로 인지되었다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.9
/
pp.5763-5768
/
2014
Maintaining a voice color is important when compounding both the normal voice because an emotion is not expressed with various emotional voices in a single synthesizer. When a synthesizer is developed using the recording data of too many expressed emotions, a voice color cannot be maintained and each synthetic speech is can be heard like the voice of different speakers. In this paper, the speech data was recorded and the change in the voice color was analyzed to develop an emotional HMM-based speech synthesizer. To realize a speech synthesizer, a voice was recorded, and a database was built. On the other hand, a recording process is very important, particularly when realizing an emotional speech synthesizer. Monitoring is needed because it is quite difficult to define emotion and maintain a particular level. In the realized synthesizer, a normal voice and three emotional voice (Happiness, Sadness, Anger) were used, and each emotional voice consists of two levels, High/Low. To analyze the voice color of the normal voice and emotional voice, the average spectrum, which was the measured accumulated spectrum of vowels, was used and the F1(first formant) calculated by the average spectrum was compared. The voice similarity of Low-level emotional data was higher than High-level emotional data, and the proposed method can be monitored by the change in voice similarity.
In this paper, we designed and developed an Emotional Speech Synthesis Markup Language (SSML) processor. Multi-speaker emotional speech synthesis technology that can express multiple voice colors and emotional expressions have been developed, and we designed Emotional SSML by extending SSML for multiple voice colors and emotional expressions. The Emotional SSML processor has a graphic user interface and consists of following four components. First, a multi-speaker emotional text editor that can easily mark specific voice colors and emotions on desired positions. Second, an Emotional SSML document generator that creates an Emotional SSML document automatically from the result of the multi-speaker emotional text editor. Third, an Emotional SSML parser that parses the Emotional SSML document. Last, a sequencer to control a multi-speaker and emotional Text-to-Speech (TTS) engine based on the result of the Emotional SSML parser. Based on SSML which is a programming language and platform independent open standard, the Emotional SSML processor can easily integrate with various speech synthesis engines and facilitates the development of multi-speaker emotional text-to-speech applications.
In this paper, we propose a method to effectively determine the representative style embedding of each emotion class to improve the global style token-based end-to-end speech synthesis system. The emotion expressiveness of conventional approach was limited because it utilized only one style representative per each emotion. We overcome the problem by extracting multiple number of representatives per each emotion using a k-means clustering algorithm. Through the results of listening tests, it is proved that the proposed method clearly express each emotion while distinguishing one emotion from others.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.423-426
/
2021
본 논문은 전역 스타일 토큰(Global Style Token)을 기준으로 하여 감정의 세기를 조절할 수 있는 방법을 소개한다. 기존의 전역 스타일 토큰 연구에서는 원하는 스타일이 포함된 참조 오디오(reference audio)을 사용하여 음성을 합성하였다. 그러나, 참조 오디오의 스타일대로만 음성합성이 가능하기 때문에 세밀한 감정 조절에 어려움이 있었다. 이 문제를 해결하기 위해 본 논문에서는 전역 스타일 토큰의 레퍼런스 인코더 부분을 잔여 블록(residual block)과 컴퓨터 비전 분야에서 사용되는 AlexNet으로 대체하였다. AlexNet은 5개의 함성곱 신경망(convolutional neural networks) 으로 구성되어 있지만, 본 논문에서는 1개의 신경망을 제외한 4개의 레이어만 사용했다. 청취 평가(Mean Opinion Score)를 통해 제시된 방법으로 감정 세기의 조절 가능성을 보여준다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.453-455
/
2020
본 논문은 시각 장애인을 위한 감정 음성 자막 서비스를 생성하는 종단 간(end-to-end) 감정 음성 합성 시스템(emotional text-to-speech synthesis system, TTS)의 음성 합성 속도를 높이면서도 합성음의 음질을 향상시키는 방법을 제안한다. 기존에 사용했던 전역 스타일 토큰(Global Style Token, GST)을 이용한 감정 음성 합성 방법은 다양한 감정을 표현할 수 있는 장점을 갖고 있으나, 합성음을 생성하는데 필요한 시간이 길고 학습할 데이터의 동적 영역을 효과적으로 처리하지 않으면 합성음에 클리핑(clipping) 현상이 발생하는 등 음질이 저하되는 양상을 보였다. 이를 보안하기 위해 본 논문에서는 새로운 데이터 전처리 과정을 도입하였고 기존의 보코더(vocoder)인 웨이브넷(WaveNet)을 웨이브알엔엔(WaveRNN)으로 대체하여 생성 속도와 음질 측면에서 개선됨을 보였다.
In this paper, a database is collected for extending the speech synthesis model to a model that synthesizes speech according to emotions and generating facial expressions. The database is divided into male and female data, and consists of emotional speech and facial expressions. Two professional actors of different genders speak sentences in Korean. Sentences are divided into four emotions: happiness, sadness, anger, and neutrality. Each actor plays about 3300 sentences per emotion. A total of 26468 sentences collected by filming this are not overlap and contain expression similar to the corresponding emotion. Since building a high-quality database is important for the performance of future research, the database is assessed on emotional category, intensity, and genuineness. In order to find out the accuracy according to the modality of data, the database is divided into audio-video data, audio data, and video data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.