• 제목/요약/키워드: 감정(鑑定)

검색결과 4,508건 처리시간 0.032초

감정 상태에 따른 발화문의 억양 특성 분석 및 활용 (Analysis and Use of Intonation Features for Emotional States)

  • 이호준;박종철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.145-150
    • /
    • 2008
  • 본 논문에서는 8개의 문장에 대해서 6명의 화자가 5가지 감정 상태로 발화한 총 240개의 문장을 감정 음성 말뭉치로 활용하여 각 감정 상태에서 특징적으로 나타나는 억양 패턴을 분석하고, 이러한 억양 패턴을 음성 합성 시스템에 적용하는 방법에 대해서 논의한다. 이를 위해 본 논문에서는 감정 상태에 따른 특징적 억양 패턴을 억양구의 길이, 억양구의 구말 경계 성조, 하강 현상에 중점을 두어 분석하고, 기쁨, 슬픔, 화남, 공포의 감정을 구분 지을 수 있는 억양 특징들을 음성 합성 시스템에 적용하는 과정을 보인다. 본 연구를 통해 화남의 감정에서 나타나는 억양의 상승 현상을 확인할 수 있었고, 각 감정에 따른 특징적 억양 패턴을 찾을 수 있었다.

  • PDF

다차원 정서모델 기반 영상, 음성, 뇌파를 이용한 멀티모달 복합 감정인식 시스템 (Multidimensional Affective model-based Multimodal Complex Emotion Recognition System using Image, Voice and Brainwave)

  • 오병훈;홍광석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.821-823
    • /
    • 2016
  • 본 논문은 다차원 정서모델 기반 영상, 음성, 뇌파를 이용한 멀티모달 복합 감정인식 시스템을 제안한다. 사용자의 얼굴 영상, 목소리 및 뇌파를 기반으로 각각 추출된 특징을 심리학 및 인지과학 분야에서 인간의 감정을 구성하는 정서적 감응요소로 알려진 다차원 정서모델(Arousal, Valence, Dominance)에 대한 명시적 감응 정도 데이터로 대응하여 스코어링(Scoring)을 수행한다. 이후, 스코어링을 통해 나온 결과 값을 이용하여 다차원으로 구성되는 3차원 감정 모델에 매핑하여 인간의 감정(단일감정, 복합감정)뿐만 아니라 감정의 세기까지 인식한다.

감정요소를 이용한 SNS 메시지 분류기 구현에 대한 연구 (A Study on the Implementation of SNS Message Classification by Emotion Factors)

  • 김재영;김명관
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.217-222
    • /
    • 2011
  • 최근 SNS가 급격하게 성장하고 있고 많은 사용자들이 이 SNS를 하나의 다른 커뮤니케이션 매체로 사용하고 있다. SNS를 이용하는 개인 사용자들은 자신의 소식과 감정의 변화를 표현하는 수단으로 SNS를 이용하고 있다. 이에 본 연구에서는 감정을 나타내는 감정 요소를 이용하여 메시지를 분류하는 프로그램을 구현하였다. 감정 성분 추출은 OMLS(Ocean-Monmouth Legal Services)에 있는 감정 어휘를 이용하여 로젯(Roget)의 시소러스와 워드넷(WordNet)을 이용하여 이루어졌다.

감정노동이 심리적 소진에 미치는 영향 (The Effect of Emotional Labor on Psychological Burnout)

  • 복미정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제53차 동계학술대회논문집 24권1호
    • /
    • pp.141-142
    • /
    • 2016
  • 본 연구에서는 자동차보험 회사의 고객센터 상담사를 대상으로 감정노동과 심리적 소진의 관계를 분석하였다. 그 결과 첫째, 고객센터 상담사들은 감정노동의 표면화 행위보다는 내면화 행위에 대한 스트레스가 더 높은 것으로 나타났다. 둘째, 심리적 소진은 개인의 특성에 따라 차이를 보였다. 정서적 고갈은 여성 상담사일수록, 개인적 성취감 결여는 고졸일수록, 1일 전화응대시간이 8시간 초과할수록, 월평균가계소득이 낮을수록 더욱 높아지는 것으로 밝혀졌다. 셋째, 상담사의 개인특성과 감정노동이 심리적 소진에 미치는 영향력을 알아본 결과, 감정노동의 표면화 행위가 높을수록 정서적 고갈을 증가시켰고, 월평균 가계소득이 높을수록 정서적 고갈을 감소시켰다. 개인적 성취감 결여는 감정노동의 표면화 행위가 높을수록, 1일 전화 응대시간이 많을수록, 높아지는 경향을 보였으며, 월평균 가계소득이 높을수록, 감정노동의 내면화 행위가 많을수록 개인적 성취감 결여는 감소되는 것으로 밝혀졌다.

  • PDF

트위터 타임라인을 이용한 감정 상태 분석 (The Emotional State Analysis using Twitter Timeline)

  • 김종인;김경록;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1452-1454
    • /
    • 2013
  • 최근 스마트 기기와 SNS가 대중화가 되면서, 이를 기반으로 사용자의 감정 분석을 통한 추천 연구가 활발하게 진행되어 지고 있다. 본 논문에서는 감정표현단어 500여개와 이모티콘을 활용하여 감정 범주를 9가지로 분류하고, 트위터광장의 여러 유명인사 트위터 타임라인의 텍스트를 가져온 후, 감정상태 분석으로 감정 범주를 카운트 한다. 이를 통해, 한사람의 감정상태의 수치를 나타내고, 추후 음악, 음식, 문화 활동 등을 다양하게 추천할 수 있는 감정상태분석모듈을 설계 및 구현한다.

KoNLPy와 KoBERT를 활용한 키워드 및 감정분석 일기 서비스 (Keyword and Emotional Analysis Diary Service Using KoNLPy and KoBERT)

  • 이채원;문미경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.501-502
    • /
    • 2022
  • 최근 작성한 일기를 SNS에 올려 평범한 사람들이 음악, 음식, 사건 등 소소한 일상을 남기고 우울증 투병기를 공유하여 힘을 얻기도 하는 등 누가 시키지 않아도 일기를 작성하고 간직하는 사람들이 증가하고 있다. 이러한 변화로 일기는 하루의 일상을 기록하는 목적을 넘어 어떤 감정을 느꼈는지 알아차리고 자아를 성찰 및 탐구하는 단계로 발전하고 있다. 그러나 스스로 일기의 키워드를 분석하고 감정이 어떠한지 정확하게 아는 것은 어렵다. 이에 따라 본 논문에서는 제시한 문제를 해결하기 위한 방법으로 KoBERT와 KoNLPy를 활용한 키워드 및 감정분석 일기 서비스를 제안하였다. 본 연구의 키워드 및 감정분석 일기 서비스는 사용자가 무의식적으로 표현하는 텍스트 기반의 일기에서 자주 반복되는 키워드와 감정을 제공하여 자신의 감정상태를 쉽게 인지하고 되돌아볼 수 있도록 제작하였다.

  • PDF

딥러닝 모델(BERT)과 감정 어휘 사전을 결합한 음원 가사 감정 분석 (Analysis of Emotions in Lyrics by Combining Deep Learning BERT and Emotional Lexicon)

  • 윤경섭;오종민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.471-474
    • /
    • 2022
  • 음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.

  • PDF

BERT 언어 모델을 이용한 감정 분석 시스템 (Sentiment Analysis System by Using BERT Language Model)

  • 김택현;조단비;이현영;원혜진;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

KE-T5 기반 한국어 대화 문장 감정 분류 (KE-T5-Based Text Emotion Classification in Korean Conversations)

  • 임영범;김산;장진예;신사임;정민영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

딥러닝 감정 인식 기반 배경음악 매칭 설계 (Design for Mood-Matched Music Based on Deep Learning Emotion Recognition)

  • 정문식;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.834-836
    • /
    • 2021
  • 멀티모달 감정인식을 통해 사람의 감정을 정확하게 분류하고, 사람의 감정에 어울리는 음악을 매칭하는 시스템을 설계한다. 멀티모달 감정 인식 방법으로는 IEMOCAP(Interactive Emotional Dyadic Motion Capture) 데이터셋을 활용해 감정을 분류하고, 분류된 감정의 분위기에 맞는 음악을 매칭시키는 시스템을 구축하고자 한다. 유니모달 대비 멀티모달 감정인식의 정확도를 개선한 시스템을 통해 텍스트, 음성, 표정을 포함하고 있는 동영상의 감성 분위기에 적합한 음악 매칭 시스템을 연구한다.