• Title/Summary/Keyword: 감정(感情)

Search Result 4,507, Processing Time 0.027 seconds

Emotion Verb Dictionary for Emotional Analysis on Characters in Novel (소설 속 인물의 감정 분석을 위한 감정 용언 사전 제안)

  • Kyu-Hee Kim;Surin Lee;Myung-Jae Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.576-581
    • /
    • 2022
  • 감정 분석은 긍부정의 극성을 판단하는 감성 분석과 달리 텍스트로부터 구체적인 감정 유형을 분류해내는 과제이다. 본 논문에서는 소설 텍스트에 감정 분석을 수행하는 것을 새로운 과제로 설정하고, 이에 활용할 수 있는 감정 용언 사전을 소개한다. 이 사전에는 맥락과 상관없이 동일한 감정을 전달하는 직접 감정 표현과 맥락에 따라 다른 감정으로 해석될 수 있는 간접 감정 표현이 구분되어 있다. 우리는 이로써 한국어 자연어처리 연구자들이 소설의 풍부한 감정 표현 텍스트로부터 정확한 감정을 분류해낼 수 있도록 그 단초를 마련한다.

  • PDF

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.19-24
    • /
    • 2009
  • 의사소통에서 대화자 간 감정의 이해는 메시지의 내용만큼이나 중요하다. 비언어적 요소에 의해 감정에 관한 더 많은 정보가 전달되고 있기는 하지만, 텍스트에도 화자의 감정을 나타내는 언어적 표지가 다양하고 풍부하게 녹아 들어 있다. 본 연구의 목적은 인간언어공학에 활용할 수 있는 감정 온톨로지를 설계하는 데 있다. 텍스트 기반 감정 처리 분야의 선행 연구가 감정을 분류하고, 각 감정의 서술적 어휘 목록을 작성하고, 이를 텍스트에서 검색함으로써, 추출된 감정의 정확도가 높지 않았다. 이에 비해, 본 연구에서 제안하는 감정 온톨로지는 다음과 같은 장점을 갖는다. 첫째, 감정 표현의 범주를 기술 대상(언어적 vs. 비언어적)과 방식(표현적, 서술적, 도상적)으로 분류하고, 이질적 특성을 갖는 6개 범주 간 상호 대응관계를 설정함으로써, 멀티모달 환경에 적용할 수 있다. 둘째, 세분화된 감정을 분류할 수 있되, 감정 간 차별성을 가질 수 있도록 24개의 감정 명세를 선별하고, 더 섬세하게 감정을 분류할 수 있는 속성으로 강도와 극성을 설정하였다. 셋째, 텍스트에 나타난 감정 표현을 명시적으로 구분할 수 있도록, 경험자 기술 대상과 방식 언어적 자질에 관한 속성을 도입하였다. 이때 본 연구에서 제안하는 감정 온톨로지가 한국어 처리에 국한되지 않고, 다국어 처리에 활용할 수 있도록 확장성을 고려했다.

  • PDF

Emotional Speech Synthesis using the Emotion Editor Program (감정 편집기를 이용한 감정 음성 합성)

  • Chun Heejin;Lee Yanghee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.79-82
    • /
    • 2000
  • 감정 표현 음성을 합성하기 위하여 본 연구에서는 감정 음성 데이터의 피치와 지속시간의 음절 유형별 및 어절 내 음절 위치에 따른 변화를 분석하였고, 스펙트럼 포락이 감정 변화에 어떤 영향을 미치는지를 분석하였다. 그 결과, 피치와 지속시간의 음절 유형별, 어절 내 음절 위치에 따른 변화와, 스펙트럼 포락 등도 감정 변화에 영향을 미치는 것으로 나타났다. 또한, 감정 음성의 음향학적 분석 결과를 적용하여 감정 음성을 합성하고 평가하기 위하여, 평상 음성의 음운 및 운율 파라미터 (피치, 에너지, 지속시간, 스펙트럼 포락)를 조절함으로써 감정 음성을 생성하는 감정 편집기를 구현하였다.

  • PDF

A Study on the Research Model for the Standardization of Software-Similarity-Appraisal Techniques (소프트웨어 복제도 감정기법의 표준화 모델에 관한 연구)

  • Bahng, Hyo-Keun;Cha, Tae-Own;Chung, Tai-Myoung
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.823-832
    • /
    • 2006
  • The Purpose of Similarity(Reproduction) Degree Appraisal is to determine the equality or similarity between two programs and it is a system that presents the technical grounds of judgment which is necessary to support the resolution of software intellectual property rights through expert eyes. The most important things in proceeding software appraisal are not to make too much of expert's own subjective judgment and to acquire the accurate-appraisal results. However, up to now standard research and development for its systematic techniques are not properly made out and as different expert as each one could approach in a thousand different ways, even the techniques for software appraisal types have not exactly been presented yet. Moreover, in the analyzing results of all the appraisal cases finished before, through a practical way, we blow that there are some damages on objectivity and accuracy in some parts of the appraisal results owing to the problems of existing appraisal procedures and techniques or lack of expert's professional knowledge. In this paper we present the model for the standardization of software-similarity-appraisal techniques and objective-evaluation methods for decreasing a tolerance that could make different results according to each expert in the same-evaluation points. Especially, it analyzes and evaluates the techniques from various points of view concerning the standard appraisal process, setting a range of appraisal, setting appraisal domains and items in detail, based on unit processes, setting the weight of each object to be appraised, and the degree of logical and physical similarity, based on effective solutions to practical problems of existing appraisal techniques and their objective and quantitative standardization. Consequently, we believe that the model for the standardization of software-similarity-appraisal techniques will minimizes the possibility of mistakes due to an expert's subjective judgment as well as it will offer a tool for improving objectivity and reliability of the appraisal results.

A Study on the Construction of an Emotion Corpus Using a Pre-trained Language Model (사전 학습 언어 모델을 활용한 감정 말뭉치 구축 연구 )

  • Yeonji Jang;Fei Li;Yejee Kang;Hyerin Kang;Seoyoon Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.238-244
    • /
    • 2022
  • 감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.

  • PDF

Study of Game Level Design Controled by Artificial Emotion (인공감정을 적용한 게임 난이도 조절에 관한 연구)

  • Park, Jun-Hyoung;Hyun, Hye-Jung;Yeo, Ji-Hye;Ko, Il-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.181-183
    • /
    • 2011
  • 최근 게임 산업에서는 게임을 인공지능적인 측면으로 접근하는 방식 중 하나로 인공감정을 주목하고 있다. 인공감정은 감정자극과 감정, 그리고 감정의 표현 방식이라는 총 3가지 기본요소로 이루어져 있다. 본 연구에서는 인공감정을 사람들에게 꾸준하게 인지도가 상승하고 있는 캐주얼 게임에 적용시켜 보았다. 캐주얼 게임은 다른 게임들에 비해 게임 속에서 감정을 느낄 수 있는 환경요소가 한정적이고, 표현할 수 있는 감정이 적어 인공감정에 대한 플레이어의 반응을 실험하기에 적합한 게임 장르이다. 본 연구에서는 쉽게 제작 가능한 버튼 클릭 방식의 캐주얼 게임을 만들었다. 그리고 게임에 플레이어의 행동을 통해 감정적 영향을 받는 인공감정이 적용된 게임 에이전트를 제작했다.

  • PDF

Emotion Recognition using Speech Recognition Information (음성 인식 정보를 사용한 감정 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

The Influence of a General Hospital Nurse's Emotional Labor, Emotional Intelligence on Job Stress (일 종합병원 간호사의 감정노동과 감성지능이 직무스트레스에 미치는 영향)

  • Oh, kyung-mi;Kim, yun-jeong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.403-404
    • /
    • 2013
  • 본 연구에서는 종합병원에 근무하는 간호사를 대상으로 감정노동과 감성지능이 직무스트레스에 어떠한 영향을 미치는지 알아보고자 한다. 본 연구에서 간호사들의 감정노동과 감성지능 변인들의 직무스트레스에 대한 분산 설명력은 31.9%였고, 회귀모형은 유의미한 것으로 나타났다(F=7.615, p<.001). 분석결과, 감정노동 변인 중 감정표현의 빈도는 직무스트레스에 유의미한 부(-)적 영향(${\beta}=.206$ p<.05)을, 감정표현 규범의 주의성은 유의미한 정(+)적 영향(${\beta}=.318$, p<.01)을 미치는 것으로 나타났으며, 감성지능변인 중 자기감정이해(${\beta}=.195$, p<.05)와 감정조절(${\beta}$=-.192, p<.05) 변인이 직무스트레스에 유의미한 부(-)적 영향을 미치는 것으로 나타났다. 이들 변인들의 상대적 영향력은 표준화계수(${\beta}$)를 통해 알 수 있듯이, 감정표현 규범의 주의성, 감정표현의 빈도, 자기감정이해, 감성조절 등의 변인 순으로 직무스트레스에 미치는 영향력이 큰 것으로 분석되었다. 이와 같은 결과를 통해, 간호사들이 직무스트레스를 낮추기 위해서는 환자들과 긍정적인 감정표현을 많이 하고, 간호사들이 병원의 감정표현 규범으로 인해 표현하지 못한 감정을 해소할 수 있는 방안이 필요하며, 자신의 감정에 대한 이해와 감성조절 능력을 기르도록 스스로 노력이 필요함을 알 수 있었다.

  • PDF

A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics (일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF