• 제목/요약/키워드: 감육해석

검색결과 62건 처리시간 0.03초

배관감육관리에 활용되는 CHECWORKS 프로그램의 열수력해석 방법론 검증에 관한 연구 (A Study on the Verification of Network Flow Analysis Methodology of CHECWORKS Program used in Pipe Wall Thinning Management)

  • 서혁기;황경모
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.79-84
    • /
    • 2013
  • In general, pipelines at nuclear power plants are affected by various types of degradation mechanisms and may be ruptured after gradually thinning. FAC (Flow-Accelerated Corrosion) is typical aging mechanism affecting the secondary side piping system. In Korea nuclear power plants, CHECWORKS program have been used for management of wall thinning damages. However, sometimes, CHECWORKS program shows wrong results at the stage of NFA (Network Flow Analysis) in case of complex pipelines. This paper describes the calculation results of pressure drop in a complex pipeline and single line by using the CHECWORKS program and the analysis results are compared with those of engineering calculation results including errors between them.

3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가 (Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis)

  • 김태순;박치용;김진원;박재학
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

증기발생기 전열관 감육부의 강도 및 손상평가 (Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning)

  • 성기용;안석환;윤자문;남기우
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.

인장하중을 받는 직선 배관 감육부의 국부 탄소성 변형률 평가 방법 (Estimation Method of Local Elastic-Plastic Strain at Thinning Area of Straight Pipe Under Tension Loading)

  • 안중혁;김윤재;윤기봉;마영화
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.533-542
    • /
    • 2006
  • In order to assess the integrity of pipes with local thinning area, the plastic strain as well as the elastic strain at the root of thinned region are required particularly when fluctuating load is applied to the pipe. For estimating elastic-plastic strain at local wall thinning area in a straight pipe under tensile load, an estimation model with idealized fully circumferential constant depth wall thinning area is proposed. Based on the compatibility and equilibrium equations a nonlinear estimation equation, from which local elastic-plastic strain can be determined as a function of pipe/defect geometry, material and the applied strain was derived. Estimation results are compared with those from detailed elastic-plastic finite element analysis, which shows good agreements. Noting that practical wall thinning in nuclear piping has not only a circular shape but also a finite circumferential length, the proposed solution for the ideal geometry is extended based on two-dimensional and three-dimensional numerical analysis of pipes with circular wall thinning.

부식된 얇은 원통 압력용기의 파손 거동 해석 (Analysis of Failure Behavior for Thin Cylinder Pressure Vessel with Corrosion)

  • 윤자문;최문오;안석환;남기우;안등 주
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.230-232
    • /
    • 2006
  • Failure behaviors of thin cylinder with corrosion are very important for the integrity of boiler and pressure vessel system. In this study, FEM with internal pressure are conducted on 1000 mm diameter (length 3000 mm and thickness, 5.9 mm) SS400 carbon steel. Failure behaviors of locally wall thinned cylinders were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at cylinder surface due to corrosion. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight cylinder. In case of local wall thinned length 30 mm, internal pressure, when the crack initiation and the plastic collapse occur, didn't decrease dramatically even though local wall thinned depth was deep. In 400 mm, the more local wall thinned depth is deep, the more internal pressure decreased dramatically. In degraded materials, crack is easily initiation but plastic collapse was difficult.

  • PDF

원전 급수가열기 동체 응력 해석 (A Stress Analysis of Feeedwater Heater Shell in Nuclear Power Plant)

  • 송석윤;김형남
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Feedwater Heaters are important components in a nuclear power plant. As the age of heater increases, the maintenance cost required for continuous operation also increases. Most heaters have the carbon steel shells, tube support plates and flow baffles. The carbon steel is susceptible to flow-accelerated corrosion. This is especially true if the flow has a two-phase mixture of steam and condensate. The wall thinning around the wet steam entrance area of the shell is inevitable during some long term operation. The structural integrity of the feedwater heater shell affects the safe operation of the nuclear power plant. Therefore, it is needed for the thinned shell to be repaired. The maintenance method for preventing failure of the shell should be determined by investigating various factors including the stress distribution of thinned area. The stress analysis of the shell including the steam entrance region is studied in this paper. The results of thinned shell is compared with that of intact shell.

급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구 (A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle)

  • 김경훈;황경모;진태은
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

CHECWORKS와 ToSPACE 프로그램의 배관감육 해석결과 비교 (Comparison of Wall Thinning Analysis Results between CHECWORKS and ToSPACE)

  • 황경모;윤훈;서혁기
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.317-323
    • /
    • 2018
  • Assumptions have always been that wall thinning on the secondary side piping in nuclear power plants is mostly caused by Flow-Accelerated Corrosion (FAC). Recent studies have showed that wall thinning on the secondary side piping is caused by Liquid Droplet Impingement Erosion (LDIE), Solid Particle Erosion (SPE), cavitation, and flashing. To manage those aging mechanisms, several software such as CHECWORKS, COMSY, and BRT-CICERO have been used in nuclear power plants. Korean nuclear power plants have been using the CHECWORKS program since 1996 to date. However, many site engineers have experienced a lot of inconveniences and problems in using the CHECWORKS program. In order to work through the inconveniences and to remedy problems, KEPCO-E&C has developed a "3D-based pipe wall thinning management program (ToSPACE)" based on the experience of over 30 years in relation to the pipe wall thinning management. This study compares the results of FAC and LDIE analysis using both the CHECWORKS and ToSPACE programs with respect to validation of the wall thinning analysis results.

유동형태 변화가 배관 곡관부 대류열전달에 미치는 영향 (Effects of the Changes in Flow Pattern on Convective Heat Transfer in the Vicinity of Pipe Elbow)

  • 송승현;유호선
    • 플랜트 저널
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2019
  • 본 연구에서는 배관 곡관부의 유동가속부식을 일으키는 인자 중 수력학적 인자인 유동형태 변경에 따른 영향을 분석하고 부식을 저감시키는 연구를 추진하였다. 열전달과 물질전달, 물질전달과 유동가속부식의 상사성에 대해 이론적 분석을 통해 확인하고 상용 수치해석 프로그램을 이용하여 국소대류열전달계수를 해석함으로써 곡관부의 물질전달 특성에 대해 고찰하였다. 곡관부 상류의 직관부 내표면 안쪽과 바깥쪽에 요철을 설치하였을 때 최대 국소열전달계수는 기본유동에 비하여 현저히 감소하여 요철의 위치와 형태에 따라 차이가 있으나 24.9%까지 감소함을 확인하였으며, 곡관부 상류의 직관부에 가인드 베인을 삽입하면 가이드 베인에 의한 배관 내측면적 크기에 따라 차이가 있으나 최대 국소열전달계수가 기본유동에 비해 12.5%까지 감소함을 확인하였다.

액적충돌침식 영향 배관의 설계변경에 관한 연구 (Study on Design Change of a Pipe Affected by Liquid Droplet Impingement Erosion)

  • 황경모;이찬규;방극진;임영식
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1097-1103
    • /
    • 2011
  • 액적충돌침식은 증기나 공기에 포함된 액적이 금속 소재에 고속으로 충돌할 때 모재가 손상되는 현상이다. 액적충돌침식 손상은 증기터빈이나 빗방울과 부딪치는 항공기에서 주로 발생되어 왔으나 최근에는 원전 배관에서도 발생하고 있다. 원전 배관 중에서도 특히 높은 압력강하가 발생하고 2상 증기가 흐르는 배관에서 주로 발생한다. 실제 2011년 초반 국내 한 원전에서는 2상 증기가 흐르는 배관에서 액적충돌침식 손상으로 인한 누설이 발생한 바 있다. 본 논문에서는 액적충돌침식 손상이 발생한 배관에 대하여 손상을 억제할 수 있는 설계변경 방안에 관한 연구를 수행하였다. 설계변경은 유체 유동측면에서 분석하였으며, 상용 수치해석 코드인 FLUENT를 이용하였다.