• Title/Summary/Keyword: 감쇠 예측

Search Result 318, Processing Time 0.034 seconds

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

Efficient Structral Safety Monitoring of Large Structures Using Substructural Identification (부분구조추정법을 이용한 대형구조물의 효율적인 구조안전도 모니터링)

  • 윤정방;이형진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • This paper presents substructural identification methods for the assessment of local damages in complex and large structural systems. For this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for a substructure to process the measurement data impaired by noises. Using the substructural methods, the number of unknown parameters for each identification can be significantly reduced, hence the convergence and accuracy of estimation can be improved. Secondly, the damage index is defined as the ratio of the current stiffness to the baseline value at each element for the damage assessment. The indirect estimation method was performed using the estimated results from the identification of the system matrices from the substructural identification. To demonstrate the proposed techniques, several simulation and experimental example analyses are carried out for structural models of a 2-span truss structure, a 3-span continuous beam model and 3-story building model. The results indicate that the present substructural identification method and damage estimation methods are effective and efficient for local damage estimation of complex structures.

  • PDF

Anisotropy of Turbulence in Vegetated Open-Channel Flows (식생된 개수로 흐름에서의 난류의 비등방성)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.871-883
    • /
    • 2005
  • This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

A Study on Complement of the Design and Analysis Procedures of Friction Pendulum System (마찰진자형 면진받침의 설계 및 해석절차 보완에 관한 연구)

  • Kim, Hyun-Uk;Joo, Kwang-Ho;Noh, Sang-Hoon;Song, Jong-Keol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.488-494
    • /
    • 2014
  • Although friction pendulum system has various advantages it is difficult to estimate the behavior because of velocity, bearing pressure, and temperature dependent characteristics of coefficient of friction. This research focuses on evaluating the conservatism of each method used and the effects of bearing pressure on the behavior of the system by conducting comprehensive examination on design and analytic procedure of friction pendulum system, as is proposed in standard, code and literature. In addition, this study provides comparative analysis on general behavior characteristics of friction pendulum system by comparing the result with that of the analysis on lead rubber bearing which possesses the same dynamic properties.

Development of Fine Dust Measurement Method based on Ultrasonic Scattering (초음파 산란 기법을 적용한 미세먼지 측정법 개발)

  • Choi, Hajin;Woo, Ukyong;Hong, Jinyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.40-48
    • /
    • 2019
  • New concept of fine dust measurement method is suggested based on ultrasonic scattering. These days, fine dust has been social problem in Korea, and many researches has been conducted including the area structural maintenance. Conventional measurement system such as optical scattering and semiconductor has a limit from environmental factors like relative humidity. However, ultrasound is based on mechanical waves, which perturb mechanical properties of medium such as density and elastic constants. Using the advantage, the algorithm for fine dust measurement is derived and evaluated using 2-D finite difference method. The numerical analysis simulates ultrasonic wave propagation inside multiple scattering medium like fine dust in air. Signal processing scheme is also suggested and the results show that the error of the algorithm is around minimum of 0.7 and maximum of 24.9 in the number density unit. It is shown that cross-section of fine dust is a key parameter to improve the accuracy of algorithm.

Stability Rating of KSR-III Rocket Engine (KSR-III 로켓엔진의 연소 안정성 평가)

  • Sohn, Chae-Hoon;Kim, Young-Mog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.95-101
    • /
    • 2004
  • Stability rating of KSR-III rocket engine is conducted based on stability rating tests in the course of development of KSR-III rocket engine. Rocket engine is approved to have combustion stabilization ability when it can suppress the external perturbation or pressure oscillation with finite amplitude and recover the original stable combustion. Rocket engine in flight may be perturbed by unexpectedly large-amplitude pressure oscillation and thus a designer should not only assure combustion stabilization ability of the engine but also quantify the stabilization capacity. For this, principal quantitative parameters and their evaluation are introduced. To verify dynamic stability of KSR-III rocket engine, six stability rating tests have been conducted. Based on these test results, such parameters are quantified and thereby, the stabilization capacity of KSR-III rocket engine is evaluated.

Fabrication of Mach-Zehnder Type Traveling-Wave Ti:$LiNbO_3$ Optical Modulator and Estimation of Frequency Response (Mach-Zehnder형 진행파 Ti:$LiNbO_3$ 광변조기의 제작 및 변조응답 추정)

  • Han, Yeong-Tak;Lee, U-Jin;Go, Byeong-Guk;Lee, Byeong-Gwon;Kim, Chang-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.791-803
    • /
    • 2001
  • Mach-Zehnder type traveling-wave Ti:LiNb $O_3$ optical modulators were designed and fabricated. Optimum parameters of optical waveguides were calculated by means of the FDM. Design of CPW traveling-wave electrodes were performed by the FEM in the active region and by the CMM in the input/output section to obtain the conditions of MW effective index and impedance matching. From the measured S parameters, MW characteristics of the traveling-wane electrodes were extracted to be ${\alpha}_m$=0.05426 $\sqrt{f}$, $N_{eff}$=2.2025, and $Z_{c}$=39 ${\Omega}$. The calculated optical response R($\omega$) showed the 3 dB bandwidth of 10 GHz.z..

  • PDF

Numerical Analysis of the Ocean Tidal Current Considering Sea Bottom Topography (해저지형을 고려한 조류유동의 수치해석)

  • B.S. Yoon;.H. Rho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.70-82
    • /
    • 1995
  • A multi-layer simulation program is developed to estimate the ocean current considering sea bottom geometry. The so-called $\sigma$ coordinate system is introduced in vertical direction to describe sea bottom topography more accurately and effectively. Leapfrog scheme combined with Euler backward scheme is used to reduce computation error which may be possibly accumulated in time evolution by Leapfrog scheme alone. In this paper, very simple examples of rectangular basins with various bottom geometries were taken and the effect of sea bottom geometry on vertical structure of the ocean tidal current and its direction were investigated. Through comparisons between the present three dimensional calculation in which bottom topography is directly taken into consideration and the two dimensional calculation in which depth average concept is employed, it was found that magnitude of surface current and its direction could be largely affected by the sea bottom topography, particularly in shallow region with complex bottom shape.

  • PDF

A Comparative Study of Two-Dimensional Numerical Models for Surface Discharge of Heated Water into Crossflow Field (가로흐름 수역으로 방출되는 2차원 표면온배수 수치모형 비교연구)

  • 이남주;최흥식;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.40-50
    • /
    • 1994
  • For an accurate prediction of the temperature field induced by heated water discharged into a shallow crossflow, a two-dimensional near-field numerical model is developed. It is based on a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate are added to those of a 2-equation turbulence model which cannot give the information of the thermal time scale ratio. Vertical diffusion is also considered by including buoyancy production and turbulence heat flux terms. The developed model is applied to a steady flow in an open channel with simple geometry and the results are compared with existing experimental data and those of the already established 2-equation turbulence model. Numerical results of the model agree with the experimental data better than those of the 2-equation model. The present model also simulates quite adequately the physical characteristics of thermal discharge in the jet entrainment and stable regions.

  • PDF

Study on Fastened Properties by Applied to CFRP Laminates of Subminiature Screw (초소형나사의 CFRP 적층판 적용에 따른 체결특성에 관한 연구)

  • Choi, Byung Hui;Kim, Ho Joong;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1239-1243
    • /
    • 2014
  • This paper presents the application of carbon-fiber-reinforced polymer (CFRP) for the damage absorption and optimal design of portable smart devices to close in life. CFRP specimens are subjected to a tensile test to estimate their mechanical properties in terms of the stacking angles. Further, the screw reverse torque and screw torque at each stacking angle are determined using a torque tester after tapping holes on the CFRP specimens. Two experiments are performed for comparing their results in order to determine optimal conditions. In the tensile test, a woven specimen is found to have the highest strength and stiffness. In the case of the woven specimen, no difference is observed even when it is applied to prevent loosening of the coating. And average result value was excellent.