• Title/Summary/Keyword: 감쇠인자

Search Result 133, Processing Time 0.046 seconds

Prediction of Ground Vibration According to the Priming Location (폭약의 기폭위치에 따른 지반진동 예측)

  • Kim, Seung-Eun;Ryu, Pog-Hyun;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2010
  • Excavations by blasting in urban area have caused lots of complaints. Hence, special attentions need to be paid to controlling the ground vibrations in designing blasting for those areas. In this study, among the various parameters that can affect the propagation characteristics of ground vibrations, the effect of the priming location of explosive on the ground vibration level was studied for two types of emulsion explosives that had different detonation velocities. Three priming locations of top, middle, and bottom were considered in a charged hole. In the experiment on the effect of detonation velocity, the ground vibration caused by the explosive with a lower detonation velocity showed larger attenuation in the amplitude. The priming locations also affected the ground vibrations levels. The ground vibration level produced from middle priming was found to be larger than the other priming methods under the same blast conditions, but the attenuation of amplitude was also larger in this case. In contrast, the ground vibration level from bottom priming was not larger than the middle priming, but the attenuation was smaller so that the ground vibration was detected at a longer distance.

Experimental study of combustion stability assessment of injector (분사기의 연소 안정성 평가를 위한 실험적 방법 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • The objective of the present study is to develop methodology for the assessment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a fullscale injector has been employed in the study, which bums gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a fullscale thrust chamber. A single split triplet injector has been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

Impact of Contrast Agent for PET Images with CT-based Attenuation Correction (CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son Hye-Kyung;Turkington Timothy G.;Kwon Yun-Young;Jung Haijo;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.192-201
    • /
    • 2005
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET Images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG Imaging. A variety of factors were estimated, including non-uniform enhancement of contrast agent, concentration and distribution size of contrast agent, noise level, image resolution, reconstruction algorithm, hypo-attenuation of contrast agent, and different time phases for contrast agent. Experimental studies showed that Hounsfield unit depends on the concentration of contrast agent and tube voltage. From the simulation data, contrast agents Introduced artifacts and degraded image quality on the attenuation-corrected PET images. The severity of these effects depends on a variety of factors, including the concentration and distribution size of contrast agent, the noise levels, and the Image resolution. These results Indicated that the impact of contrast agents should be considered with a full understanding of their potential problems in clinical PET/CT images.

  • PDF

The effects of physical factors in SPECT (물리적 요소가 SPECT 영상에 미치는 영향)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Using the 2-D and 3-D Hoffman brain phantom, 3-D Jaszczak phantom and Single Photon Emission Computed Tomography, the effects of data acquisition parameter, attenuation, noise, scatter and reconstruction algorithm on image quantitation as well as image quality were studied. For the data acquisition parameters, the images were acquired by changing the increment angle of rotation and the radius. The less increment angle of rotation resulted in superior image quality. Smaller radius from the center of rotation gave better image quality, since the resolution degraded as increasing the distance from detector to object increased. Using the flood data in Jaszczak phantom, the optimal attenuation coefficients were derived as 0.12cm$\^$-1/ for all collimators. Consequently, the all images were corrected for attenuation using the derived attenuation coefficients. It showed concave line profile without attenuation correction and flat line profile with attenuation correction in flood data obtained with jaszczak phantom. And the attenuation correction improved both image qulity and image quantitation. To study the effects of noise, the images were acquired for 1min, 2min, 5min, 10min, and 20min. The 20min image showed much better noise characteristics than 1min image indicating that increasing the counting time reduces the noise characteristics which follow the Poisson distribution. The images were also acquired using dual-energy windows, one for main photopeak and another one for scatter peak. The images were then compared with and without scatter correction. Scatter correction improved image quality so that the cold sphere and bar pattern in Jaszczak phantom were clearly visualized. Scatter correction was also applied to 3-D Hoffman brain phantom and resulted in better image quality. In conclusion, the SPECT images were significantly affected by the factors of data acquisition parameter, attenuation, noise, scatter, and reconstruction algorithm and these factors must be optimized or corrected to obtain the useful SPECT data in clinical applications.

  • PDF

Ultrasonic linear and nonlinear properties of fatigued aluminium 6061-T6 with voids (기공을 포함한 피로손상 알루미늄 6061-T6의 초음파 특성평가)

  • Kang, To;Song, Sung-Jin;Na, Jeong K.;Park, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • It is known that in aluminum 6061-T6, which is composed of $Mg_2Si$ and ${\beta}-Al_5FeSi$, void nucleation grows around ${\beta}-Al_5FeSi$ of Al606-T6. In this work, growth of voids was checked by scanning a 6061-T6 specimen with SEM observation. The effects of dislocation damping, coherency strain and voids on ultrasonic attenuation and nonlinearity parameters were experimentally measured. It was observed that a nonlinearity parameter increases until 75 percent of fatigue life and decreases after that. From the results, the authors inferred that dislocation damping and coherency damping increase nonlinearity parameters and void nucleation decreases them as ultrasonic scattering increases with void. The application of nonlinearity parameters in estimating degradation of materials with complex microstructures through fatigue process, therefore, should be carefully considered.

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

The Effects of Surface Diffusivity on the Room Acoustics Using Scaled Models (축척모델을 이용한 실의 확산성 영향평가)

  • Yeon Chul-Ho;Park Kye-Kyun;Haan Chan-Hoon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.451-454
    • /
    • 2000
  • 실의 음향성능을 규명하기 위하여 많은 음향인자가 개발되어지고 제시되어 왔다. 음향인자 중 확산은 실의 전반적인 음향성능에 매우 유용한 것으로 여겨져 왔다. 본 연구는 장방형의 형태를 가지고 체적과 마감재료가 같은 2종류의 축척모델을 제작하여 각각의 모델에서 RT, EDT, SPL, C, IACC 등을 측정하여 확산체의 유$\cdot$무에 따른 실의 실내음향 성능을 알아보고자 한다 실험결과 실내 표면의 확산성의 차이에 따라 표면의 확산성이 좋은 공간에서 초기음장에서 음에너지가 집중되고 분산되는 것을 입증하였다. 즉 확산성이 좋은 모델에서 잔향시간(RT)은 더 짧으나 초기감쇠시간(EDT)이 더 길게 나타남으로 인하여 음에너지의 분포가 실의 확산상태에 의하여 음의 발생이후 짧은 시간내에 집중하여 전달되고 있음을 증명하였다. 또한 실의 확산상태가 좋은 공간의 명료도가 확산이 되지 않은 실에 비하여 훨씬 더 좋은 결과를 보이고 있음을 나타냈다. 이상의 결과를 종합하여 볼 때 실내 표면의 확산성이 전반적인 실내 음장의 향상에 크게 기여하고 있음을 밝혀 냈다.

  • PDF

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.229-234
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating read. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.475-480
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating road. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources (조직 표면에서의 베타선 흡수선량 측정)

  • Hah, Suck-Ho;Kim, Jeong-Mook;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.17-26
    • /
    • 1991
  • Beta ray $(^{90}Sr+^{90}Y)$ absorbed dose at tissue surface was measured from the distance of 30cm by use of extrapolation chamber. In the measurement, following factors were considered: effective area of collecting electrode, polarity effect, ion recombination and window attenuation. The measured absorbed dose rate at tissue surface was $1.493{\mu}Gy/sec$ with ${\pm}2.9%$.

  • PDF