• Title/Summary/Keyword: 감속 기어

Search Result 134, Processing Time 0.025 seconds

The research regarding the epicyclic gear system development for a rate of high-reduction embodiment (고감속비 구현을 위한 유성기어 시스템 개발에 관한 연구)

  • Han M.S.;Kim S.Y.;Park J.W.;Lee S.S.;Kim S.K.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.347-348
    • /
    • 2006
  • Among various gear system, planetary gear system has the best characteristics in high efficiency, excellent strength capacity, easy convertible speed control, and compact design aspect. Strength of gear is considered as the most important design factor. We have studied tooth form and the planetary gear system that have high reduction gear ratio is created by using the involute curve.

  • PDF

Optimization of Gear Webs for Rotorcraft Engine Reduction Gear Train (회전익기용 엔진 감속 기어열의 웹 형상 최적화)

  • Kim, Jaeseung;Kim, Suchul;Sohn, Jonghyeon;Moon, Sanggon;Lee, Geunho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.953-960
    • /
    • 2020
  • This paper presents an optimization of gear web design used in a main gear train of an engine reduction gearbox for a rotorcraft. The optimization involves the minimization of a total weight, transmission error, misalignment, and face load distribution factor. In particular, three design variables such as a gear web thickness, location of rim-web connection, and location of shaft-web connection were set as design parameters. In the optimization process, web, rim and shaft of gears were converted from the 3D CAD geometry model to the finite element model, and then provided as input to the gear simulation program, MASTA. Lastly, NSGA-II optimization method was used to find the best combination of design parameters. As a result of the optimization, the total weight, transmission error, misalignment, face load distribution factor were all reduced, and the maximum stress was also shown to be a safe level, confirming that the overall gear performance was improved.

Speed Control Of The Magnet Gear-Based Speed Reducer For Non-contact Power Transmission (비접촉 동력 전달을 위한 마그네트 기어 기반 감속기의 속도 제어에 관한 연구)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.380-388
    • /
    • 2016
  • Using the magnet gear, it is possible to transmit power without mechanical contact. As the drive shaft in a magnet gear-based speed reducer system is isolated from the drive shaft, the system is a two-inertia resonance system that should cope with an external load with the limited air-gap stiffness. On the other hand, the drive shaft or low-speed side is controlled only by the torque of the drive shaft through an air-gap, and the excessive oscillation or the slip can then be generated because of an abrupt disturbance that is different from the general mechanical gear system. Therefore, the disturbance loaded at the low speed side should be measured or estimated, and considered in the control of the driving shaft. This paper proposes a novel full-state feedback controller with a reduced-order observer for the speed reducer system using a magnet gear with a unified harmonic modulator. The control method was verified by simulation and experiment. To estimate the load at the low speed side, a novel observer was designed, in which the new state variable is introduced and the new state equation is formulated. Using a full-state feedback controller including the observer, the test result against disturbance was compared with two D.O.F PI speed controllers. The pole slip was compensated within relatively a short time, and the simulation result about the estimated variable shows a similar tendency to the test result. The test results showed that the magnet gear-based reducer can be applied to an accurate servo system.

Study on Tooth Micro-geometry Optimization of Rear Gear Set in 2 Speed Planetary Gear Reducer (2단 유성기어 감속기의 후부기어 치형수정에 관한 연구)

  • Jeon, Min-Hyung;Kim, Lae-Sung;Noh, Seung-Yoon;Zhen, Qin;Choi, Chang;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2017
  • Gear tooth micro-geometry modifications include the intentional removal of material from the gear teeth flanks, so that the shape is no longer a perfect involute. If the gear shapes are perfect, then the gear tooth meshing is better, therefore the gears will transmit input torque in a more efficient manner without the generation of high frequency engine fluctuation noise. In this paper, we study tooth micro-geometry optimization of rear gear set in 2 speed planetary gear reducers. Analysis revealed problems which are need of modification. Based on the results, tooth micro-geometry was used to deal with load distributions on the rear gear set.

Study on the Shift Characteristics of a 2speed Manual Transmission apply to V-Blet (V-blet를 적용한 2단 수동변속기의 변속특성에 관한 연구)

  • Youm, Kwang-wook
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.55-60
    • /
    • 2020
  • As research and development of eco-friendly vehicles are expanding worldwide, additional devices of vehicles are reduced or deleted to increase the mileage, or research is being conducted to reduce weight. Among them, the multi-stage transmission that was applied to the internal combustion engine vehicle was deleted and replaced with a reducer, and the initial driving power is secured by increasing the torque through the control of the motor output value. However, since frequent motor speed change can result in a load increase, this study attempts to develop a compact and lightweight manual two-stage reducer with a general reducer structure. Therefore, a two-speed transmission with two gear ratio was designed by inserting a large gear and a small gear in a structure with a parallel shaft to connect the gears with a V-belt in the form of a parallel shaft reducer, and setting the gear ratio of the low and high gears respectively. In addition, power performance according to the rotational speed and load of the transmission was checked through a test, and the heat generation characteristics generated during driving were checked to verify the validity of the transmission.

Fault Diagnosis of a High-speed Railway Reduction Unit Using Analysis of Vibration Characteristics (고속철도차량 감속구동장치의 이상진단을 위한 진동특성분석)

  • Ji, Hae Young;Lee, Kang Ho;Kim, Jae Chul;Lee, Dong Hyoung;Moon, Kyoung Ho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2013
  • The reduction unit is one of the most important components for railway vehicles because the torque of the motor must be transmitted to the wheels of the vehicle by the reduction unit. The faults in the reduction units of high-speed trains are caused by damage such as gear, fatigue. These have serious impacts on safety of the train during operation. To address this development of a system for monitoring, fault diagnosis of the reduction unit is needed to keep the vehicle running safely. Before that can be accomplished, it is most important to understand the vibration characteristics of the reduction unit in a normal state. Vibration diagnosis technology using characteristic-analysis of vibration waveform and frequency is known to be the most effective method for fault diagnosis. In this paper, we analyzed the vibration characteristics of the reduction units two Korean high-speed trains (KTX and KTX II), under normal conditions, by two test methods (driving gear test, full-vehicle test).

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

Frequency Response Characteristics of Two-Staged Gear Reduction Servo System According to the Backlash Contribution Ratio Variation of Each Gear Reduction Stage (감속단 백래시 기여율 변화에 따른 2단 기어 감속서보 시스템의 주파수 응답 특성)

  • Baek, Joo-Hyun;Hong, Sung-Min;Yang, Tae-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.103-109
    • /
    • 2002
  • The paper investigates the change of frequency response characteristics on two-stage gear reduction servo system according to the variation of backlash amount of each gear reduction stage, under the condition that the backlash of total system is constant. It is shown that the frequency response characteristics of the system heavily depend on the contribution ratio which is defined as a ratio of the first backlash amount to the total backlash. It is also found that there is an optimal backlash combination to maximize the bandwidth of two-stage gear reduction servo system when the allowable total backlash is determined.

A Study on the Fabrication and Performance Evaluation of Worm Gear Reducer (웜기어 감속기 제작 및 성능평가에 관한 연구)

  • Lee, Dong Gyu;Zhen, Qin;Jeon, Min Hyong;Kim, Lae Sung;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • We aimed to develop a high quality 3.5 ton class swing reducer by studying the efficiency improvement of the reducer through the optimum design and performance evaluation of the assembled, high efficiency, lightweight 3.5 ton swing reducer. Based on the optimal design of the worm and worm wheel, the optimal manufacturing method of the worm wheel, the optimized casing design, and the optimum design of the output pinion, Respectively. Therefore, in this paper, to improve the efficiency of the worm gear reducer system, we will develop the manufacturing technology and verify the mass production by combining the manufacturing process design, processing and assembling technology according to the optimization design. We have conducted research to realize mass production by product verification such as product efficiency, reliability and durability according to optimal design of worm gear reducer.