기업의 경쟁력 제고를 위한 브랜드 커뮤니케이션의 중요성이 높아지고 있는 가운데, 판매-소비 인터페이스의 최전선에 있는 패키지 디자인의 역할과 비중이 커지면서 패키지가 곧 브랜드라는 인식이 생기고 있다. 소비자가 패키지를 통해 느끼는 감성은 시각적 경험이 발생하는 시점과 환경에 따라 달라질 수 있다. 특히, FMCG의 경우, 광고를 통해 축적된 제품에 대한 긍정적 이미지는 실제 매장에서 여러 제품과 동시에 노출되었을 때 제품에 대한 느낌이 상쇄될 수 있다. 본 연구에서는 감성경험조건의 차이 즉, 패키지의 노출조건에 따라 감성의 차이가 발생한다는 가설을 세우고, 이를 검증하기 위한 온라인 실험환경을 구축하였다. 실험시나리오를 바탕으로 플래시 툴을 활용하여 인터랙티브한 실험컨텐츠를 제작하고, 평가값은 PHP 를 통해 DB 에 저장하였다. 저장된 데이터는 SPSS로 통계분석을 시도하였다. 본 실험을 통해 독립 노출과 군집노출에 따라 감성의 차이가 발생하며, 감성차이에 영향을 주는 요인으로서 컬러와 타이포그래피가 주된 요인이 된다는 점을 알 수 있었다.
본 논문에서는 메타데이터를 이용하여 사용자 시청경험을 향상시키기 위한 감성효과 메타데이터 저작도구의 설계 및 구현에 관한 것이다. 이를 위해 가상세계와 현실세계의 소통을 위한 규격인 ISO/IEC 23005 의 메타데이터를 이용한다. 다양한 목적을 가진 메타데이터의 유용성에도 불구하고, 실제 메타데이터를 저작하는 단계는 지루하고 단조로운 작업이다. 본 논문에서는 직관적이고 사용자 친화적인 메타데이터 저작도구를 소개한다. 제안된 저작도구는 사용자에게 방송콘텐트의 감성효과 저작을 위한 특징 정보를 제시함으로써 저작의 효율을 높일 수 있다.
지금까지의 애니메이션 작업은 애니메이터의 객관적 감성과 경험에 의해 이루어져 왔다. 소프트웨어 디자인에 있었어도 지성적인 데이터들을 바탕으로 제작되어져 왔다. 이는 객관화하기 용이한 자료로서 데이터화하기가 쉬웠기 때문 일 것으로 보인다. 이와는 반대로 인간의 감성은 객관화하고 디지털화하기 어려운 요소들이 많이 존재한다. 본 연구는 디지털화하기 어려운 인간의 감성적 데이터를 객관화하고 이를 정량적 데이터로 활용할 수 있는 방법에 대한 부분으로 나는(flying) 궤적(path)을 연구 대상으로 하였다. 실험에 있어 인간이 나는 제적에 대해 어떻게 표현하는지에 대한 감성어를 수집하였다. 수집한 감성어를 통해 감성 평가어를 추출하고 추출한 감성 평가어에서 느껴지는 나는 궤적에 대한 스케치 이미지를 수집하였다. 수집한 스케치 이미지를 기초로 본 연구의 핵심이 되는 실험 동영상 샘플을 제작하였다. 다음으로 나는 궤적을 나타내는 감성어에 대한 물리적 요소와 동영상 샘플과의 상관관계를 분석하기 위해 수량화이론III류와 수량화이론I류를 각각 이용하였다. 그 결과 감성어와 동영상 샘플과의 구조를 파악 할 수 있었고, 나는 궤적에 대한 감성반응의 물리적 자극요소 또한 분석 할 수 있었다. 나는 궤적은 오브젝트(object)가 지나간 경로(path)에 해당한다. 이러한 경로(궤적)를 보고 감성자극 요소들이 복합적으로 작용하여 독특한 감성어로 표현되어 지는 것으로 보인다. 여기엔 감성을 자극하는 요소들이 존재하는데, 그 요소로는 속도, 회전, 규칙 그리고 호의 길이가 그 물리적 요소인 것으로 파악되었다. 본 연구를 통해 나는 궤적의 애니메이션을 표현하는데 있어 애니메이터들의 주관적인 감성 표현들을 객관화, 정량화 시키고자 하였으며, 본 연구의 데이터는 감성 애니메이션 시스템 설계에 있어 기본 데이터로 적용되는 것을 목표로 하고 있다.
현재까지 모바일 게임 사용자 연구는 개별 콘텐츠의 재미, 중독성, 편의성과 같은 1차적 정서를 분석하는 차원에 머물러 있다. 그러나 스마트폰의 확산 이후 사용자들의 멀티태스킹이 보편화되면서 사용자의 게임 콘텐츠 경험은 복잡해지고 있다. 따라서 다양한 행위를 동시에 수행하는 사용자의 관점에서 모바일 게임에 대한 보다 깊이 있는 분석이 필요한 상황이다. 본 연구는 집단 감성의 관점에서 모바일 게임 사용자들의 연결된 심성 모형을 포착하고자 했다. 이를 위해 사용자들의 비의도성과 의도성을 동시에 포착할 수 있는 소셜 데이터 분석을 실시했으며, 그 결과로 서비스의 교차 소비, 정보 추천방식의 다양화, 관계 기반의 과제 경험을 주요 이슈로 제시했다.
본 연구는 소비자의 감성과 경험이 중요한 서비스 분야에서 생성형 인공지능을 활용하는 방법에 대한 조사를 목표로 활용시의 환각 현상을 최소화하고, 소비자의 감성 및 경험에 대한 전략적 서비스를 개발하는 것에 초점을 맞추고 있다. 이를 위해 기계적인 방식의 접근과 사용자가 프롬프트를 직접 생성하는 방식을 검토하였고, 사업아이템 정의 제공, 페르소나 특성 값 제공, 예시와 맥락형 동사명령, 출력 포멧과 톤 컨셉 지정 등의 프롬프트 생성 요인을 중심으로 실험적으로 적용하였다. 연구는 생성형 AI가 제공하는 맞춤형 콘텐츠의 정확성과 사용자 만족도를 향상시키는 데 기여할 수 있는 방안을 탐색한다. 또한, 이러한 접근 방식은 생성형 인공지능을 실제 서비스에 적용 시 발생할 수 있는 환각 현상 중심의 문제들을 해결하는 데 중요한 역할을 하며, 생성형 인공지능을 통한 소비자 서비스 혁신에 기여할 것으로 기대한다. 연구 결과는 소비자의 감성과 경험을 풍부하게 해석하는데 생성형 인공지능이 중요한 역할을 할 수 있음을 보여주며, 이는 다양한 산업 분야에서의 활용 가능성을 넓히고, 기술 발전을 넘어 소비자 감성 및 경험 전략의 새로운 방향을 제시할 것으로 기대한다. 하지만, 아직은 연구가 생소한 생성형 AI 기술 기반의 연구를 진행함으로써 미흡한 부분이 많다. 향후 연구에서는 더 다양한 산업 환경 적용으로 연구요인들의 범용성과 조건별 효과를 더 깊이 탐구할 필요가 있다. 또한, AI 기술의 급속한 발전에 따라 새로운 형태의 환각 증상과 이에 대응하는 새로운 전략 개발에 관한 연구가 지속해서 이루어져야 할 것이다.
최근의 '똑똑한 소비자(Smart Consumer)'라 불리는 소비자가 많아지고 있는데, 이들은 제조사나 광고를 통해 전달되는 정보에 의존하지 않고, 기존 사용자나 전문가들의 후기, 여러 과학 지식을 획득하여 제품에 대한 이해를 높이고, 본인 스스로가 직접 판단하여 구매하고 있다. 특히나 화장품 분야는 인체 유해성과 같은 부정적인 요소에 대한 민감도가 높고, 자신의 고유한 피부 특성과의 조화도 고려되어야 하기 때문에, 전문적인 지식과 타인의 경험, 본인의 과거 경험 등을 종합적으로 생각하여 구매 의사결정을 내려야 하고, 이에 대해서 적극적인 소비자가 많아지고 있다. 이러한 움직임은 '셀프 뷰티' 와 같은 '셀프' 문화의 열풍과 함께, 문화 현상인 '그루밍족'의 등장, 사회적 트렌드인 'K-뷰티' 와도 동행한다고 할 수 있다. 맞춤형 화장품에 대한 관심의 급부상도 이러한 현상 중 하나라 볼 수 있다. 소비자들의 맞춤형 화장품의 니즈를 충족시키기 위해, 화장품 제조사나 관련 기업들은 ICT기술과의 융합을 통하여 프리미엄 서비스를 중심으로 소비자의 니즈에 대응하고 있다. 그러나 기업 및 시장 현황이 맞춤형 화장품을 향해 진화하고 있지만, 소비자의 피부 상태, 추구하는 감성, 실제 제품이나 서비스까지 소비자 경험을 전체적으로 완전하게 다루는 지능형 데이터 플랫폼은 부재한다. 본 연구에서는 소비자 경험에 대한 지능형 데이터 플랫폼 구축을 위한 첫 단계로 소비자 언어 기반의 화장품 감성 분석을 수행하였다. 소비자들 개인의 선호나 취향이 분명한 앰플/세럼 카테고리를 중심으로 매출 순위 1위에서 99위까지의 99개 제품을 선정하여, 블로그와 트위터 등의 SNS 상에 언급되는 후기 내에 화장품 경험에 대한 소비자 감성을 수집하였다. 총 357개의 감성 형용사를 수집하였고, 고객 여정 워크샵을 통해 유사 감성을 합치고, 중복 감성을 통합하는 작업을 수행하였으며, 최종 76개 형용사를 구축했다. 구축한 형용사에 대한 SOM 분석을 통해 화장품에 대한 소비자 감성에 대한 클러스터링을 실시했다. 분석 결과, 총 8개의 클러스터를 도출했고, 클러스터 별 각 노드의 벡터 값을 기준으로 소비자 감성 Top 10을 도출했다. 소비자 감성을 기준으로 클러스터별 소비자 감성에 서로 다른 특징이 발견됐으며, 소비자에 따라 다른 소비자의 감성을 선호, 기존과는 다른 소비자 감성을 고려한 추천 및 분류 체계가 필요함을 확인했다. 연구 결과를 통해 감성 분석의 활용 도메인이 화장품만이 아닌 다양한 영역으로 확장될 수 있음 확인했으며, 감성 분석을 통한 소비자 인사이트를 도출할 수 있다는 점을 시사했다. 또한, 본 연구에서 활용한 디자인 씽킹(Design Thinking)의 방법론의 적용하여 화장품 특화된 감성 사전을 과학적인 프로세스로 구축했으며, 화장품에 대한 소비자의 인지 및 심리에 대한 이해를 도울 수 있을 것으로 기대한다.
인공지능 스피커 시장은 꾸준히 성장하고 있지만, 실제 스피커 사용자들의 만족도는 42%에 그치고 있다. 따라서, 본 연구에서는 인공지능 스피커의 세대별 토픽 변화와 감성 변화를 통해 사용자 경험을 저해하는 요소는 무엇인지 분석해 보고자 한다. 이를 위해 아마존 에코 닷 3세대와 4세대 모델에 대한 리뷰를 수집하였다. 토픽모델링 분석 기법을 사용하여 세대별로 리뷰를 이루는 주제 및 주제의 변화를 찾아내고, 딥러닝 기반 감성 분석을 통해 토픽에 대한 사용자 감성이 세대에 따라 어떻게 변화되었는지 살펴보았다. 토픽모델링 결과, 세대별로 5개의 토픽이 도출되었다. 3세대의 경우 스피커의 일반적 속성을 나타내는 토픽은 제품에 긍정적 반응 요인으로 작용했고, 사용자 편의 기능은 부정적 반응 요인으로 작용했다. 반대로 4세대에서는 일반적 속성은 부정적으로, 사용자 편의 기능은 긍정적으로 도출되었다. 이와 같은 분석은 방법론 측면에서 어휘적 특징뿐 아니라 문장 전체의 문맥적 특징이 고려된 분석결과를 제시할 수 있다는 것에 그 의의가 있다.
인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.
고비용 생산구조, 중국 제조업의 가파른 성장과 해외 생산 증가로 생산기반 약화를 겪는 국내 제조업의 현 시점에서 성장성 복원을 위해 사용자 특성정보를 발굴하여 DB 시스템을 통해 사용자의 인지 감성 정보기반의 제품 설계를 지원할 수 있는 통합 시스템의 구축이 요구되고 있다. 본 연구에서는 제조업 분야 중 주력사업인 정보기기 업체를 대상으로 인지 및 감성 정보를 활용한 사용자 중심 제품설계 지원 시스템 구축에 앞서 제조업 실수요자들의 요구사항을 분석하여 실제 적용이 가능한 시스템의 설계 방향을 정의하는데 목적을 두고 있다. 관련 6개의 제조업체와 in-depth interview를 통해 현 제품 제조 프로세스, 제품 제작 시 활용 데이터, 인지 감성 정보 데이터의 유무와 사용방식, 인지 및 감성 정보를 활용한 사용자 중심 제품설계 지원시스템의 필요도 조사를 수행하였다. 이를 통해 사용자 특성정보, 특히 중소 제조업체가 개별적으로 조사 할 수 없는 인지 감성 사용자 데이터에 초점을 둔 디자인 지원 시스템에 대한 필요도를 확인하였다.
최근 IT 기술의 발달로 태블릿, 스마트폰과 같은 다양한 디바이스로 손쉽게 음악을 감상할 수 있다. 하지만 최근 이런 기술 발달과는 다르게 사용자가 원하는 음악을 검색하는 방법은 고전적인 형태에서 벗어나지 않고 있다. 기존 음악 검색 방법은 텍스트 기반, 내용 기반, 소비자 감성 기반의 음악 추천 검색 방법이 있으며 저장된 메타 데이터를 이용하여 사용자의 질의에 대한 결과만 제공할 뿐 사용자의 경험 정보를 고려하지 않는다. 그리고 기존 플랫폼들은 사용자가 최근 많이 들은 가수, 장르, 분위기를 종합하여 사용자에게 어울리는 음악을 추천을 할 뿐 사용자의 경험정보를 고려하여 음악을 추천하지는 않는다. 본 논문에서는 사용자의 경험 정보를 활용하여 사용자 맞춤형 음악 추천 시스템을 제안한다. 본 시스템은 사용자의 현재 기분 정보, 주변 날씨 정보 등을 입력 받는다. 이후, 경험 정보를 기반으로 결정 트리를 통해 사용자 요구 기반의 음악 추천 시스템을 구축하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.