• 제목/요약/키워드: 감마비선형 에러

검색결과 3건 처리시간 0.014초

3차원 광학 측정을 위한 디지털 프린지 투사에 있어서 LCD 비선형 감마 에러 개선 방법 (An Improved Method of LCD Gamma-nonlinearity Error Reduction in Digital Fringe Projection for Optical Three-dimensional Shape Measurement)

  • 김우성
    • 한국광학회지
    • /
    • 제31권3호
    • /
    • pp.134-141
    • /
    • 2020
  • 디지털 프린지 투사를 이용한 3차원 광학 측정시스템은 많은 비접촉 측정 응용에 사용된다. 수 ㎛까지 측정할 수 있는 이 시스템은 LCD를 사용하여 디지털 프린지 패턴을 생성한다. 이는 다양한 디지털 프린지 패턴을 컴퓨터 소프트웨어로 쉽게 만들 수 있기 때문이다. LCD 감마비선형에 의하여 물체에 투사된 디지털 프린지 패턴 에러는 3차원 물체 측정의 정확도에 영향을 준다. 정확도를 개선하기 위하여 광도전달함수(intensity transfer function)의 역함수를 사용하여 LCD 감마비선형에 의한 에러를 줄일 수 있는 개선된 방법을 제안하였다. 표준 반도체시편을 가지고 컴퓨터에서 생성한 사인파와 카메라에서 얻은 사인파의 차를 측정하여 제안한 방법의 개선효과를 보였다.

비선형 감마 커브를 위한 감마 라인 시스템의 비교 (Comparison among Gamma(${\gamma}$) Line Systems for Non-Linear Gamma Curve)

  • 장원우;이성목;하주영;김주현;김상준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.265-272
    • /
    • 2007
  • 본 논문은 비선형 휘도 출력을 요구하는 영상장치 기기를 위한 감마 보정에 관한 것이다. 제안된 감마 수정 시스템은 일반적인 공식에 의해 만들어지는 비선형적 특성을 지닌 감마 커브와 제안된 알고리즘에 의해 생성되는 결과와 차이를 최소화하기 위한 시스템이다. 오차를 최소하기 위해, 제안된 시스템은 Least Squares Polynomial을 사용하였다. 이 알고리즘은 샘플간의 점들에 대해서 최적의 다항식을 계산하는 방법이다. 각각의 시스템들은 연속적인 여러 개의 방정식으로 구성되어 있으며, 정밀도를 높이기 위해서 각 구간마다 고유의 중첩 구간을 가지고 있다. 최종적으로 알고리즘을 검증하여, 시스템들은 Verilog-HDL를 사용하여 구현되었다. 본 논문에선 가장 초기적 알고리즘인, Seed Table을 이용한 기존 시스템과 이를 개선하기 위해 만들어진 제안된 감마 시스템을 비교하려고 한다. 제안된 시스템과 기존 시스템은 클럭 대기(clock latency)가 1과 2의 값을 지닌다. 그러나 에러 범위(LSB)는 $0{\sim}+36$에서 $-1{\sim}+1$으로 향상되었다. 삼성 0.35 worst case 환경에서 합성된 gate count는 2,063에서 2,564으로 증가되었으나, maximum data arrival time은 29.05[ns]에서 17.52[ns]으로 더 빨라졌다.

비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합 (The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm)

  • 장정훈;조호상;장원우;강봉순
    • 융합신호처리학회논문지
    • /
    • 제12권3호
    • /
    • pp.163-168
    • /
    • 2011
  • 본 논문은 감마보정을 위한 비선형 곡선 알고리즘의 개선에 관한 연구이다. 기존의 비선형 감마 곡선 생성 방법은 Gauss-Jordan 역행렬을 적용한 최소 자승 다항식(Least Square Polynomial)을 사용하였다. 이 방법은 다항식 계수 값 계산 과정 중 고차행렬의 역행렬 연산에서 $10^{-11}$ 이하의 매우 작은 값은 절단함으로써 곡선접합의 정밀도가 감소된다. 또한 입력으로 사용되는 샘플 포인트가 10-bit 기준으로 0~1023의 밝기 값에 대하여 고루 분포되어있는 경우에만 정확한 동작이 가능하다. 본 논문은 이러한 기존 알고리즘의 단점을 보완하기 위하여, 고차 다항식의 계수 값을 반데몬드 행렬(Vandemond Matrix)에 SVD분해(Singular Value Decomposition)와 QR분해법(QR Decomposition)을 적용하여 행렬의 고유치와 직교성분만으로 연산하였다 또한, 입력 데이터의 구간을 분할하여 각 구간의 다항식을 생성하고, 새롭게 생성된 다항식을 이용하여 곡선 접합을 수행하도록 하였다. 입력 데이터와 곡선 접합결과의 평균제곱오차(Mean Square Error: MSE)와 표준편차(Standard Deviation: STD)를 통한 오차율 비교 결과 최하위 비트(Least Significant Bit: LSB) 에러 범위에서 MSE가 약 $10^{-9}$ 이고 STD는 약 $10^{-5}$로 정밀도가 향상되었다.