• Title/Summary/Keyword: 간접측정법

Search Result 213, Processing Time 0.022 seconds

Analysis of Signal Properties in accordance with electrode area of x-ray conversion material (X선 검출 물질의 전극 면적에 따른 신호특성 분석)

  • Jeon, S.P.;Kim, S.H.;CHO, K.S.;Jung, S.H.;Park, J.K.;Kang, S.S.;Han, Y.H.;Kim, K.S.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.1
    • /
    • pp.5-9
    • /
    • 2010
  • In recent, a digital x-ray detector attracted worldwide attention and there are many studies to commercialize. There are two methods in digital x-ray detector. This method is an Indirect method and Direct method. This study is to see the differences between the digital x-ray detector based on a-Se used in the existing indirect conversion method and an x-ray conversion material that has better SNR(Signal-to-noise ratio) and property than the a-Se. To solve the problem that is difficult to make a large area film using Screen-Print method, we used a Screen-Print method. In this study, we used a polyclystal $HgI_2$ as x-ray conversion material and a sample thickness is $150{\mu}m$ and an area is $3cm{\times}3cm$. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a Magnetron Sputtering System and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$ and then we evaluated darkcurrent, sensitivity and SNR of the $HgI_2$ film are measured, then we evaluated the electrical properties. And we used a current integration mode when I-V test. This experiment shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high darkcurrent. Through fabricating of various thicknesses and optimal electrodes, we will optimize SNR in the future work.

An Analysis on the Conditions for Successful Economic Sanctions on North Korea : Focusing on the Maritime Aspects of Economic Sanctions (대북경제제재의 효과성과 미래 발전 방향에 대한 고찰: 해상대북제재를 중심으로)

  • Kim, Sang-Hoon
    • Strategy21
    • /
    • s.46
    • /
    • pp.239-276
    • /
    • 2020
  • The failure of early economic sanctions aimed at hurting the overall economies of targeted states called for a more sophisticated design of economic sanctions. This paved way for the advent of 'smart sanctions,' which target the supporters of the regime instead of the public mass. Despite controversies over the effectiveness of economic sanctions as a coercive tool to change the behavior of a targeted state, the transformation from 'comprehensive sanctions' to 'smart sanctions' is gaining the status of a legitimate method to impose punishment on states that do not conform to international norms, the nonproliferation of weapons of mass destruction in this particular context of the paper. The five permanent members of the United Nations Security Council proved that it can come to an accord on imposing economic sanctions over adopting resolutions on waging military war with targeted states. The North Korean nuclear issue has been the biggest security threat to countries in the region, even for China out of fear that further developments of nuclear weapons in North Korea might lead to a 'domino-effect,' leading to nuclear proliferation in the Northeast Asia region. Economic sanctions had been adopted by the UNSC as early as 2006 after the first North Korean nuclear test and has continually strengthened sanctions measures at each stage of North Korean weapons development. While dubious of the effectiveness of early sanctions on North Korea, recent sanctions that limit North Korea's exports of coal and imports of oil seem to have an impact on the regime, inducing Kim Jong-un to commit to peaceful talks since 2018. The purpose of this paper is to add a variable to the factors determining the success of economic sanctions on North Korea: preventing North Korea's evasion efforts by conducting illegal transshipments at sea. I first analyze the cause of recent success in the economic sanctions that led Kim Jong-un to engage in talks and add the maritime element to the argument. There are three conditions for the success of the sanctions regime, and they are: (1) smart sanctions, targeting commodities and support groups (elites) vital to regime survival., (2) China's faithful participation in the sanctions regime, and finally, (3) preventing North Korea's maritime evasion efforts.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.