• Title/Summary/Keyword: 간접배수

Search Result 43, Processing Time 0.018 seconds

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Environmental Assessment of the Shihwa Lake by using the Benthic Pollution Index (저서오염지수(BPI)를 이용한 시화호 환경평가)

  • Lee, Jae-Hac;Park, Ja-Yang;Lee, Hyung-Gon;Park, Heung-Sik;Kim, Dong-Sung
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2003
  • In order to assess the ecological changes induced by organic pollutants of the Shihwa Lake, BPI (Benthic Pollution Index) based on the benthic faunal community was employed. It was modified from Infaunal Trophic Index (ITI), and recommended as a pollution detecting method for the environmental assessment. The BPI values were calculated from the benthos data, which were collected for three terms: in 1980, before the Shihwa Lake was built up; in 1994-1997, which the Shihwa Lake was completely isolated from the outer seawater; in 1997-1999, after inflow of the outer seawater. Since the Shihwa Dike was constructed in February 1994, the pollution intensity of the lake had been increased from the narrow and inner part of the former Gyeonggi Bay and spread fast along the coast line of the Shihwa Lake. Then, in 1996 it showed the very high BPI levels all around the Lake. This serious polluted condition had been lasted till 1997, when the inflow of the seawater was begun. In 1998, from the nearest part of the Shihwa Gate, the BPI levels gradually became low in most area of the Lake, except its inner and narrow part. These greatly lowered BPI levels mean that the seawater inflow could be assumed to affect positively in the lake. Furthermore, BPI gave the same results from the other environmental assessment based on the abundance and the species richness of macrobenthic community. It shows that BPI could be useful as an effective method to assess the marine environment and evaluate the status of environmental conditions.

The Seasonal Variation of Microbial Community in the Eutrophic Brackish Water of Lake Shihwa (시화호 주변 부영양화 기수유역의 미소생물 군집의 계절적 변화)

  • Baek, Seung-Ho;You, Kai;Park, Bum-Soo;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.55-68
    • /
    • 2010
  • The seasonal variation of microbial community, based on the bacteria, heterotrophic nanoflagellates (HNF), phytoplankton and ciliates, was investigated at three sites in the eutrophic brackish water of Lake Shihwa and its adjacent areas from May 2007 through May 2008. At the upstream-region site St. 1, compared to the other two sites, significantly lower salinities and higher concentrations of nutrients and chlorophyll $\alpha$ (Chl. $\alpha$) were recorded. The annual average abundances of bacteria at St. 1, St. 2 and St. 3 were $6.8{\times}10^6$, $7.4{\times}10^6$ and $4.6{\times}10^6\;cells\;mL^{-1}$, respectively. As for the annual average concentrations of HNF, $19{\times}10^2$, $6.7{\times}10^2$ and $5.9{\times}10^2\;cells\;mL^{-1}$, were recorded in St. 1, St. 2 and St. 3 respectively. The highest ciliate abundance appeared at St. 1 on 29 April, 2008 and in which, 99% were autotrophic ciliate Mesodinium rubrum (Myrionecta rubra). Significant linear correlations between the biomass of bacteria and Chl. $\alpha$ were found, however, no significant relationships between ciliates abudance/biomass and their prey organisms were detected in all three sites, implying relatively low energy transfer efficiencies between them. These results indicated that the trophic relationship between ciliates and their prey organisms in the microbial community might be influenced by indirect route since higher trophic level organisms did not directly correlate to those of lower trophic level, although high primary productions were detected in the eutrophic brackish water of Lake Shihwa and its adjacent areas.