• Title/Summary/Keyword: 가짜 정보

Search Result 115, Processing Time 0.026 seconds

Korean Fake News Detection with User Graph (사용자 그래프 기반 한국어 가짜뉴스 판별 방법)

  • Kang, MyungHoon;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.97-102
    • /
    • 2021
  • 최근 급격한 정보기술의 발달로 가짜뉴스가 사회문제로 대두되고 있다. 한국어 가짜뉴스 문제를 딥러닝으로 해결하기 위해서 기존의 연구들은 본문 기반의 가짜뉴스 탐지를 진행하였으며 최근에는 기사 본문 외의 보조적 정보를 활용하는 방법으로 연구가 진행되고 있다. 그러나 기존의 방식과 개선된 방식들 모두 적절한 가짜뉴스 탐지 방법을 제시하지 못하여 모델이 산출한 가짜뉴스 표현 벡터의 품질을 보장할 수 없었다. 또한 한국어 가짜뉴스 문제를 해결함에 있어서 적절한 공개 데이터셋 또한 제공되지 않았다. 따라서 본 논문은 한국어 가짜뉴스 탐지 문제에서 독자 반응정보를 추가하여 효과적인 학습을 할 수 있는 '사용자 그래프 기반 한국어 가짜뉴스 판별 방법'과 해당 모델이 적절히 학습할 수 있는 간이 데이터셋 구축 방법을 제안한다.

  • PDF

COVID-19 Korean Fake News Detection using Named Entity and User Reproliferation Information (개체명 및 사용자 재확산 정보를 이용한 한국어 COVID-19 가짜 뉴스 검출)

  • Park, Chaewon;Kang, Jiwon;Lee, Daeun;Lee, Munyoung;Han, Jinyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.85-90
    • /
    • 2021
  • 코로나바이러스감염증-19로 인한 팬데믹 상황이 지속되면서 감염증 정보의 불확실성으로 인해 코로나 관련 루머가 온라인상에서 빠르게 전파되고 있다. 이러한 코로나 관련 가짜 뉴스를 사전에 탐지하기 위해, 본 연구에서는 한국어 코로나 가짜 뉴스 데이터셋을 구축하고, 개체명과 사용자 재확산 정보를 이용한 한국어 가짜 뉴스 탐지 모델을 제안한다. 가짜 뉴스 팩트체킹 언론인 서울대팩트체크센터에서 코로나 관련 루머 및 가짜 뉴스에 대한 검증 기사를 수집한 후, 기사로부터 개체명 추출 모델을 통해 주제 키워드를 추출하고, 이를 이용해 유튜브 상의 사용자 재확산 정보를 수집하여 데이터셋을 구성하였다. BERT 기반의 제안 모델을 다양한 비교군과 비교하였고, 특성 조합에 따른 실험을 통해 각 특성 정보(기사 텍스트, 개체명 데이터, 유튜브 데이터)가 가짜 뉴스 탐지 성능에 미치는 영향을 알아보았다.

  • PDF

Survey of Fake News Detection Techniques and Solutions (가짜뉴스 판별 기법 및 해결책 고찰)

  • Lee, HyeJin;Kim, Jinyoung;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.37-39
    • /
    • 2020
  • 인터넷 상에서의 허위정보 생산과 유통은 주로 가짜 뉴스를 통하여 이루어진다. 과거에는 신문이나 공중파 TV등 뉴스 기사의 생산과 유통이 매우 제한적이었지만 지금은 인터넷의 발달로 누구나 쉽게 뉴스를 생산하고 유통할 수 있다. 뉴스 생산의 용이성은 정보 공유의 즉각성과 수월성이라는 장점을 제공하지만 반대로 불확실한 뉴스 남발로 인한 정보의 신뢰성 하락과 선량한 피해자를 양산하는 단점 또한 존재한다. 이는 가짜 뉴스가 사회적 문제로 대두되고 있는 이유이다. 에이전트나 스파이더 등의 소프트웨어를 통해 인터넷으로 급속도로 전파되는 가짜 뉴스를 전통 방식인 소수의 전문가가 수동으로 잡아내는 것은 불가능하다. 이에 기술발달로 잡아내기 힘들어진 가짜뉴스에 대해, 역으로 발달된 기술을 활용하여 잡아내려는 시도가 늘어나고 있다. 본 논문에서는 가짜뉴스를 판별하는 다양한 기법들을 탐색하고 해결방안을 제시하고자 한다.

  • PDF

COVID_19 fake news and real news discrimination system (코로나19 가짜뉴스와 진짜뉴스 판별 시스템)

  • Lee, Jimin;Lee, Jisun;Woo, Jiyoung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.411-412
    • /
    • 2022
  • 본 논문에서는 코로나19 뉴스와 코로나19 가짜뉴스의 데이터셋을 활용하여 입력 받은 뉴스가 가짜뉴스일 확률을 예측한다. 가짜 뉴스 본문에는 코로나19, 대통령, 정부, 가짜, 언론 등의 키워드의 빈도가 높았다. 위의 키워드를 토대로 나이브 베이즈 모델링을 하여 이를 적용해 가짜 뉴스를 가려내는 웹페이지를 개발하였다.

  • PDF

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

COVID-19 Cascade Dataset for Fake News Detection (COVID-19 가짜뉴스 탐지를 위한 전파 데이터셋)

  • Han, So-Eun;Kang, Yoonsuk;Ko, Yunyong;Ahn, Jeewon;Kim, Yusim;Oh, Seong Soo;Park, Heejin;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.312-313
    • /
    • 2021
  • 가짜뉴스가 사회연결망 상에서 빠르게 전파되면서 사회적 혼란을 야기하고 있어 가짜뉴스를 탐지하는 것이 중요한 문제로 대두되고 있다. 최근 가짜뉴스 탐지 연구에서 사회연결망의 전파 정보를 활용한 방법이 기존 뉴스 컨텐츠 기반 가짜뉴스 탐지 방법보다 효과적임을 보였다. 따라서 본 논문에서는 기존 CoAID 데이터셋을 기반으로 사회연결망상의 전파 데이터를 포함하는 COVID-19 Cascade 데이터셋을 소개한다. COVID-19 Cascade 를 활용하면 전파 기반 가짜뉴스 탐지 방법에도 적용이 가능하다. 이후 간단한 분석을 통해 진짜뉴스와 가짜뉴스의 차이를 확인한다.

A Study on Korean Fake news Detection Model Using Word Embedding (워드 임베딩을 활용한 한국어 가짜뉴스 탐지 모델에 관한 연구)

  • Shim, Jae-Seung;Lee, Jaejun;Jeong, Ii Tae;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.199-202
    • /
    • 2020
  • 본 논문에서는 가짜뉴스 탐지 모델에 워드 임베딩 기법을 접목하여 성능을 향상시키는 방법을 제안한다. 기존의 한국어 가짜뉴스 탐지 연구는 희소 표현인 빈도-역문서 빈도(TF-IDF)를 활용한 탐지 모델들이 주를 이루었다. 하지만 이는 가짜뉴스 탐지의 관점에서 뉴스의 언어적 특성을 파악하는 데 한계가 존재하는데, 특히 문맥에서 드러나는 언어적 특성을 구조적으로 반영하지 못한다. 이에 밀집 표현 기반의 워드 임베딩 기법인 Word2vec을 활용한 텍스트 전처리를 통해 문맥 정보까지 반영한 가짜뉴스 탐지 모델을 본 연구의 제안 모델로 생성한 후 TF-IDF 기반의 가짜뉴스 탐지 모델을 비교 모델로 생성하여 두 모델 간의 비교를 통한 성능 검증을 수행하였다. 그 결과 Word2vec 기반의 제안모형이 더욱 우수하였음을 확인하였다.

  • PDF

Fake news detection via news elements (요소 정보 활용을 통한 가짜 뉴스 탐지)

  • Han, Sangdo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.588-590
    • /
    • 2020
  • 본 연구에서는 가짜 뉴스 탐지를 위한 데이터를 구축하고, 내용 기반의 탐지를 위한 시스템을 제안하였으며, 뉴스의 각 요소 정보가 탐지 성능에 미치는 영향을 확인하였다. 이는 기존의 내용 기반 가짜 뉴스 탐지 방법론들의 단점을 보완할 뿐 아니라 뉴스의 요소 정보가 진위 판별에 미치는 영향을 확인하기 위함이었다. 이를 위해 직접 구축한 뉴스 데이터의 제목과 본문을 따로 인코딩하여 판별하였고, 각 요소를 배제한 실험을 통해 뉴스 제목이 가장 중요한 요소 정보임을 확인하였다. 결과적으로 자극적인 제목으로 이목을 끌려는 가짜 뉴스의 속성을 정량적으로 확인할 수 있었다.

  • PDF

Fake News Detection based on Convolutional Neural Network and Sentiment Analysis (합성곱신경망과 감성분석 기반의 가짜뉴스 탐지)

  • Lee, Tae Won;Yang, Yeongwook;Park, Ji Su;Shon, Jin Gon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.64-67
    • /
    • 2021
  • 가짜뉴스는 뉴스 기사 형식을 갖는 날조된 정보를 의미하며, 최근 모바일 인터넷 장치의 보급과 소셜 네트워크 서비스의 대중화로 온라인 확산이 가속화되고 있다. 기존 연구는 가짜뉴스의 탐지를 위해 뉴스의 주제목, 부제목, 리드, 본문 등 뉴스 기사를 이루는 구성요소를 비롯하여 언론사, 기자, 날짜, 확산 경로 등의 메타 데이터를 대상으로 분석하였다. 그러나 뉴스의 제목과 본문 및 메타 데이터 등은 내용 수정이 쉬워, 다량의 데이터를 학습한 모델이라 하더라도 높은 정확도를 장기간 유지하기 어려울 수 있다. 이러한 문제점을 해결하기 위하여 본 논문은 합성곱 신경망을 이용해 문맥 정보를 분석하고 장단기 메모리 기반의 감성분석을 추가로 수행한다. 문맥 정보와 가짜뉴스 유포자가 쉽게 수정할 수 없는 감성 변화 패턴을 활용하여 성능이 개선된 가짜뉴스 탐지 모델을 제안한다.

Survey on Fake Review Detection of E-commerce Sites (전자 상거래 사이트의 가짜 리뷰 판별 기법 조사)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.79-81
    • /
    • 2014
  • People increasingly rely on sources of information from E-commerce reviews. Product reviews is an important determinant of potential customers' buying choices. They are also utilized by product manufacturers to find problems of their products and to collect competitive intelligence information about their competitors. Unfortunately, it is well-known that many online product reviews are not made by genuine costumers of products. Reviewers could write some undeserving positive reviews to promote or fake negative reviews to defame some certain product, and we call them fake product reviews. Fake product review detection makes an attempt to detect fake reviews and removes them to restore the truthful ones for readers. To the best of our knowledge, there is still less published study on this problem. In this paper, we make a survey and an attempt to give a brief overview on fake product review detection. The related work of fake product review detection is presented including web spam and spam email. Then some methods to detect fake reviews are introduced and summarized. The trend of fake product review detection is concluded finally.

  • PDF