Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.1
/
pp.55-62
/
2019
Convolutional neural networks (CNNs) show high performance in the computer vision, but they require an enormous amount of operations, making them unsuitable for some resource- or energy-starving environments like the embedded environments. To overcome this problem, there have been much research on accelerators or pruning of CNNs. The previous pruning schemes have not considered the architecture of CNN accelerators, so the accelerators for the pruned CNNs have some inefficiency. This paper proposes a new pruning scheme, Conv-XP, which considers the architecture of CNN accelerators. In Conv-XP, the pruning is performed following the 'X' or '+' shape. The Conv-XP scheme induces a simple architecture of the CNN accelerators. The experimental results show that the Conv-XP scheme does not degrade the accuracy of CNNs, and that the accelerator area can be reduced by 12.8%.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.80-82
/
2000
공간 데이터베이스 관리 시스템에서 제공하는 공간 질의는 많은 디스크 참조와 CPU 처리시간을 필요로 한다. 이 중에서 {{{{k}}}}-최근접 질의는 많은 디스크 참조를 요구하는 질의로써 지금까지 많은 연구가 이루어져 왔다. 트리 구조의 색인을 사용하는 {{{{k}}}}=최근접질의 처리방법은, 조건을 만족하지 않는 노드를 가지 치기 기법을 사용하여 노드 방문 횟수를 줄인다. 그러나, 이 방법은 가지치기 과정에서 불필요한 디스크 참고가 발생하여 성능을 저하시키는 단점을 가지고 있다. 본 논문에서는 가지치기 기법 대신 주어진 {{{{k}}}} 개의 최근접객체가 존재할 영역을 미리 예측함으로써 디스크 참조 횟수를 줄이는 방법을 제시한다. 이 영역을 예측하기 위해서 본 논문에서는 데이터 분포에 대한 밀도를 이용하였다. 실험에 의하면 이러한 방법은 기존의 가지치기 기법을 이용한 방법에 비해서 최고 22%, 평균 7%정도의 디스크 참조 횟수의 감소 효과가 있음을 알 수 있다.
Most of previous works for skyline queries have focused only on static attributes of target objects. With the advance in mobile applications, however, the need of continuous skyline queries for moving objects has been increasing. Even though several techniques to process continuous skyline queries have been proposed recently, they cannot process subspace queries, which use only the subset of attribute dimensions. Therefore it is not feasible to utilize those methods for mobile applications which must consider moving objects and subspaces simultaneously. In this paper, we propose a dominant object-based pruning method to compute subspace skyline of moving objects efficiently at query time and present the experimental results to show the effectiveness of the proposed method.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.22-27
/
2006
4단계 스카이라인 영역 결정 기법[2]은 영역 결정 시간이 객체의 개수에 비례해서 현저히 증가하기 때문에 다수의 객체를 포함하는 도메인들에 적용하기 어렵다. 이러한 문제점은 스카이라인 영역이 지배 객체 집합의 부분 집합으로 이루어지는 특성을 고려하지 않았기 때문에 발생한다. 이 논문에서는 스카이라인 영역 결정에 불필요한 객체들을 제거할 수 있는 거리 기반 가지치기 기법과 영역 결정 선분의 범위 축소 기법을 제안한다. 제안한 기법들을 R*-트리와 INN(Incremental Nearest Neighbor) 알고리즘에 적용함으로써 점진적으로 스카이라인 영역을 결정할 수 있으며 영역 결정 시간을 현저하게 감소시킬 수 있다. 제안한 기법의 성능 향상을 증명하기 위해 4단계 영역 결정 기법과의 비교 실험을 수행한다.
Journal of the Korean Association of Geographic Information Studies
/
v.6
no.4
/
pp.59-70
/
2003
Spatial data base system provides many query types and most of them are required frequent disk I/O and much CPU time. k-NN search is to find k-th closest object from the query point and up to now, several k-NN search methods have been proposed. Among these, MINMAX distance method has an aim not to access unnecessary node by adapting pruning technique. But this method accesses more disks than necessary while pruning unnecessary nodes. In this paper, we propose new k-NN search algorithm based on density of object. With this method, we predict the radius to be expected to contain k-NN objects using density of data set and search those objects within this radius and then adjust radius if failed. Experimental results show that this method outperforms the previous MINMAX distance method. This algorithm visit less disks than MINMAX method by the factor of maximum 22% and average 7%.
The rapid development of wireless sensor network technology has garnered significant attention from researchers. In extensive distributed networks, these applications often rely on battery power. Given the limited energy capacity of batteries, effective energy management is crucial for improving network performance. Wireless sensor networks consist of numerous sensor nodes, where energy consumption is primarily driven by these nodes. In clustering protocols, certain nodes repeatedly serve as cluster heads, resulting in increased energy consumption compared to other nodes. This energy-balancing algorithm employs pruning techniques to evaluate and analyze a node's position, its frequency of acting as a cluster head, and its remaining energy. Additionally, it includes a dynamic adjustment mechanism for selecting the cluster head node. Experimental results demonstrate that this algorithm extends the operational duration of sensor nodes, thereby effectively prolonging the lifespan of the wireless sensor network.
온디바이스 환경에서 딥러닝 모델 최적화는 필수적이지만, 제한된 자원으로 고성능 모델을 직접 적용하는 데에는 한계가 있다. 본 논문에서는 이를 극복하기 위한 주요 기법인 가지치기, 양자화, 지식 증류, 신경망 아키텍처 탐색 및 이들의 결합 기법을 소개하고 분석한다. 각 기법의 정의와 특징, 적용 사례를 통해 성능 향상과 자원 효율성을 극대화하는 방법을 제시하며, 이를 바탕으로 최근 연구 동향을 소개한다.
With the development of location aware technologies and mobile devices, location-based services have been studied. To provide location-based services, many researchers proposed methods for processing various query types with Mapreduce(MR). One of the proposed methods, is a Reverse k-nearest neighbor(RkNN) query processing method with MR. However, the existing methods spend too much cost to process the continuous RkNN query. In this paper, we propose an efficient continuous RkNN query processing method with MR to resolve the problems of the existing methods. The proposed method uses the 60-degree-pruning method. The proposed method does not need to reprocess the query for continuous query processing because the proposed method draws and monitors the monitoring area including the candidate objects of a RkNN query. In order to show the superiority of the proposed method, we compare it with the query processing performance of the existing method.
Successive cancellation (SC) decoding that is one of the decoding algorithms for polar codes has long decoding latency and low throughput because of the nature of successive decoding. To reduce the latency and increase the throughput, various decoding structures for polar codes are presented. In this paper, we compare the previous decoding structures and analyze them by dividing into two types, pruning and multi-path decoders. Decoders for applying pruning are representative of SSC (simplified SC), Fast-SSC and redundant-LLR structures, and decoders with multi-path are representative of 2-bit SC and redundant-LLR structures. All the previous structures are compared in terms decoding latency and hardware area, and according to the comparison, the syndrome check based decoder has the lowest latency and redundant-LLR decoder has the highest hardware efficiency.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.134-136
/
2000
본 논문에서는 고차원의 특징 벡터 공간에서의 객체에 대한 효율적인 검색을 지원하는 셀기반 시그니쳐 트리 색인 구조(CS-트리, CI-트리)를 제안한다. 특징 벡터 공간을 셀로써 분할하고 특징 벡터는 셀의 시그니쳐로 표현되며 트리에 저장된다. 특징 벡터 대신 시그니쳐를 사용하여 트리의 깊이가 낮아짐으로서 검색을 효율적으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 이용한 유사성 검색 알고리즘으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 성능 비교를 수행하여, 성능비교 결과 본 논문에서 제안하는 CS-트리와 CI-트리가 검색 시간 측면에서 최대 30%의 검색 성능이 개선됨을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.