• Title/Summary/Keyword: 가중평균최소제곱법

Search Result 7, Processing Time 0.028 seconds

A Weighted Mean Squared Error Approach Based on the Tchebycheff Metric in Multiresponse Optimization (Tchebycheff Metric 기반 가중평균제곱오차 최소화법을 활용한 다중반응표면 최적화)

  • Jeong, In-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • Multiresponse optimization (MRO) seeks to find the setting of input variables, which optimizes the multiple responses simultaneously. The approach of weighted mean squared error (WMSE) minimization for MRO imposes a different weight on the squared bias and variance, which are the two components of the mean squared error (MSE). To date, a weighted sum-based method has been proposed for WMSE minimization. On the other hand, this method has a limitation in that it cannot find the most preferred solution located in a nonconvex region in objective function space. This paper proposes a Tchebycheff metric-based method to overcome the limitations of the weighted sum-based method.

A Robust Design of Response Surface Methods (반응표면방법론에서의 강건한 실험계획)

  • 임용빈;오만숙
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.395-403
    • /
    • 2002
  • In the third phase of the response surface methods, the first-order model is assumed and the curvature of the response surface is checked with a fractional factorial design augmented by centre runs. We further assume that a true model is a quadratic polynomial. To choose an optimal design, Box and Draper(1959) suggested the use of an average mean squared error (AMSE), an average of MSE of y(x) over the region of interest R. The AMSE can be partitioned into the average prediction variance (APV) and average squared bias (ASB). Since AMSE is a function of design moments, region moments and a standardized vector of parameters, it is not possible to select the design that minimizes AMSE. As a practical alternative, Box and Draper(1959) proposed minimum bias design which minimize ASB and showed that factorial design points are shrunk toward the origin for a minimum bias design. In this paper we propose a robust AMSE design which maximizes the minimum efficiency of the design with respect to a standardized vector of parameters.

Longevity Bond Pricing by a Cohort-based Stochastic Mortality (코호트 사망률을 이용한 장수채권 가격산출)

  • Jho, Jae Hoon;Lee, Kangsoo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.4
    • /
    • pp.703-719
    • /
    • 2015
  • We propose an extension of the Lee and Jho (2015) mean reverting the two factor mortality model by incorporating a period-specific cohort effect. We found that the consideration of cohort effect improves the mortality fit of Korea male data above age 65. Parameters are estimated by the weighted least squares method and Metropolis algorithm. We also emphasize that the cohort effect is necessary to choose the base survival index to calculate longevity bond issue price. A key contribution of the article is the proposal and development of a method to calculate the longevity bond price to hedge the longevity risk exposed to Korea National Pension Services.

A Posterior Preference Articulation Method to the Weighted Mean Squared Error Minimization Approach in Multi-Response Surface Optimization (다중반응표면 최적화에서 가중평균제곱오차 최소화법을 위한 선호도사후제시법)

  • Jeong, In-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7061-7070
    • /
    • 2015
  • Multi-Response Surface Optimization aims at finding the optimal setting of input variables considering multiple responses simultaneously. The Weighted Mean Squared Error (WMSE) minimization approach, which imposes a different weight on the two components of mean squared error, squared bias and variance, first obtains WMSE for each response and then minimizes all the WMSEs at once. Most of the methods proposed for the WMSE minimization approach to date are classified into the prior preference articulation approach, which requires that a decision maker (DM) provides his/her preference information a priori. However, it is quite difficult for the DM to provide such information in advance, because he/she cannot experience the relationships or conflicts among the responses. To overcome this limitation, this paper proposes a posterior preference articulation method to the WMSE minimization approach. The proposed method first generates all (or most) of the nondominated solutions without the DM's preference information. Then, the DM selects the best one from the set of nondominated solutions a posteriori. Its advantage is that it provides an opportunity for the DM to understand the tradeoffs in the entire set of nondominated solutions and effectively obtains the most preferred solution suitable for his/her preference structure.

A comparison on coefficient estimation methods in single index models (단일지표모형에서 계수 추정방법의 비교)

  • Choi, Young-Woong;Kang, Kee-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1171-1180
    • /
    • 2010
  • It is well known that the asymptotic convergence rates of nonparametric regression estimator gets worse as the dimension of covariates gets larger. One possible way to overcome this problem is reducing the dimension of covariates by using single index models. Two coefficient estimation methods in single index models are introduced. One is semiparametric least square estimation method, which tries to find approximate solution by using iterative computation. The other one is weighted average derivative estimation method, which is non-iterative method. Both of these methods offer the parametric convergence rate to normal distribution. However, practical comparison of these two methods has not been done yet. In this article, we compare these methods by examining the variances of estimators in various models.

Comparative Analysis of Parameter Estimation Methods in Estimation of Spatial Distribution of Probability Rainfall (확률강우량의 공간분포추정에 있어서 매개변수 추정기법의 비교분석)

  • Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.413-413
    • /
    • 2011
  • 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 따라서 본 연구에서는 계층구조로 구성된 가우시안 공간선형혼합모델을 적용하여 확률강우량의 공간분포를 추정함에 있어서 모델 매개변수에 대한 추정기법을 비교하였으며, 매개변수 추정기법으로서 경험베리오그램에 대한 곡선적합기법인 보통최소제곱법 및 가중최소제곱법, 우도함수를 기반으로 하는 최우도법 및 REML과 같은 기존의 매개변수 추정기법들과 최근 공간통계학 분야에서 적용이 증가하고 있는 Bayesian 기법을 비교하였다. 이로부터 매개변수 추정기법 간의 매개변수 추정치에 대한 정량적 비교결과를 제시하였으며, Bayesian 기법의 적용을 통해 매개변수에 대한 불확실성 추정결과를 제시하였다. 이러한 결과들은 확률강우량의 공간분포 추정에 있어서 공간예측모델의 매개변수 추정 및 예측에 대한 신뢰성을 향상시킬 수 있는 기초자료로 활용될 수 있을 것이다.

  • PDF

Ordinary Kriging of Daily Mean SST (Sea Surface Temperature) around South Korea and the Analysis of Interpolation Accuracy (정규크리깅을 이용한 우리나라 주변해역 일평균 해수면온도 격자지도화 및 내삽정확도 분석)

  • Ahn, Jihye;Lee, Yangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • SST (Sea Surface Temperature) is based on the atmosphere-ocean interaction, one of the most important mechanisms for the Earth system. Because it is a crucial oceanic and meteorological factor for understanding climate change, gap-free grid data at a specific spatial and temporal resolution is beneficial in SST studies. This paper examined the production of daily SST grid maps from 137 stations in 2020 through the ordinary kriging with variogram optimization and their accuracy assessment. The variogram optimization was achieved by WLS (Weighted Least Squares) method, and the blind tests for the interpolation accuracy assessment were conducted by an objective and spatially unbiased sampling scheme. The four-round blind tests showed a pretty high accuracy: a root mean square error between 0.995 and 1.035℃ and a correlation coefficient between 0.981 and 0.982. In terms of season, the accuracy in summer was a bit lower, presumably because of the abrupt change in SST affected by the typhoon. The accuracy was better in the far seas than in the near seas. West Sea showed better accuracy than East or South Sea. It is because the semi-enclosed sea in the near seas can have different physical characteristics. The seasonal and regional factors should be considered for accuracy improvement in future work, and the improved SST can be a member of the SST ensemble around South Korea.