• Title/Summary/Keyword: 가중치 모델

Search Result 945, Processing Time 0.03 seconds

An Adaptive M-estimators Robust Estimation Algorithm (적응적 M-estimators 강건 예측 알고리즘)

  • Jang Seok-Woo;Kim Jin-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.21-30
    • /
    • 2005
  • In general, the robust estimation method is well known for a good statistical estimator that is insensitive to small departures from the idealized assumptions for which the estimation is optimized. While there are many existing robust estimation techniques that have been proposed in the literature, two main techniques used in computer vision are M-estimators and least-median of squares (LMS). Among these. we utilized the M-estimators since they are known to provide an optimal estimation of affine motion parameters. The M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. To resolve these problems, we proposed an adaptive M-estimators algorithm that effectively separates outliers from non-outliers and estimate affine model parameters, using a continuous sigmoid weight function. The experimental results show the superiority of our method.

  • PDF

Correlation-based Automatic Image Captioning (상호 관계 기반 자동 이미지 주석 생성)

  • Hyungjeong, Yang;Pinar, Duygulu;Christos, Falout
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1386-1399
    • /
    • 2004
  • This paper presents correlation-based automatic image captioning. Given a training set of annotated images, we want to discover correlations between visual features and textual features, so that we can automatically generate descriptive textual features for a new unseen image. We develop models with multiple design alternatives such as 1) adaptively clustering visual features, 2) weighting visual features and textual features, and 3) reducing dimensionality for noise sup-Pression. We experiment thoroughly on 10 data sets of various content styles from the Corel image database, about 680MB. The major contributions of this work are: (a) we show that careful weighting visual and textual features, as well as clustering visual features adaptively leads to consistent performance improvements, and (b) our proposed methods achieve a relative improvement of up to 45% on annotation accuracy over the state-of-the-art, EM approach.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

An Extended Faceted Classification Scheme and Hybrid Retrieval Model to Support Software Reuse (소프트웨어 재사용을 지원하는 확장된 패싯 분류 방식과 혼합형 검색 모델)

  • Gang, Mun-Seol;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.23-37
    • /
    • 1994
  • In this paper, we design and implement the prototype system, and propose the Extended Faceted Classification. Scheme and the Hybrid Retrieval Method that support classifying the software components, storing in library, and efficient retrieval according to user's request. In order to designs the classification scheme, we identify several necessary items by analyzing basic classes of software components that are to be classified. Then, we classify the items by their characteristics, decide the facets, and compose the component descriptors. According to their basic characteristics, we store software components in the library by clustering their application domains and are assign weights to the facets and its items to describe the component characteristics. In order to retrieve the software components, we use the retrieval-by-query model, and the weights and similarity for easy retrieval of similar software components. As the result of applying proposed classification scheme and retrieval model, we can easily identify similar components and the process of classification become simple. Also, the construction of queries becomes simple, the control of the size and order of the components to be retrieved possible, and the retrieval effectiveness is improved.

  • PDF

Optimization of Mobile Robot Predictive Controllers Under General Constraints (일반제한조건의 이동로봇예측제어기 최적화)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.602-610
    • /
    • 2018
  • The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.

Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares (머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안)

  • Lee, Kye Woong;Oh, Seung Taek;Yoon, Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.427-432
    • /
    • 2019
  • In this paper, we propose three approaches to modeling Android malware. The first method involves human security experts for meticulously selecting feature sets. With the second approach, we choose 300 features with the highest importance among the top 99% features in terms of occurrence rate. The third approach is to combine multiple models and identify malware through weighted voting. In addition, we applied a novel method of eliminating permission information which used to be regarded as a critical factor for distinguishing malware. With our carefully generated feature sets and the weighted voting by the ensemble algorithm, we were able to reach the highest malware detection accuracy of 97.8%. We also verified that discarding the permission information lead to the improvement in terms of false positive and false negative rates.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Pose Estimation of Face Using 3D Model and Optical Flow in Real Time (3D 모델과 Optical flow를 이용한 실시간 얼굴 모션 추정)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.780-785
    • /
    • 2006
  • HCI, 비전 기반 사용자 인터페이스 또는 제스쳐 인식과 같은 많은 분야에서 3 차원 얼굴 모션을 추정하는 것은 중요한 작업이다. 연속된 2 차원 이미지로부터 3 차원 모션을 추정하기 위한 방법으로는 크게 외형 기반 방법이나 모델을 이용하는 방법이 있다. 본 연구에서는 동영상으로부터 3 차원 실린더 모델과 Optical flow를 이용하여 실시간으로 얼굴 모션을 추정하는 방법을 제안하고자 한다. 초기 프레임으로부터 얼굴의 피부색과 템플릿 매칭을 이용하여 얼굴 영역을 검출하고 검출된 얼굴 영역에 3 차원 실린더 모델을 투영하게 된다. 연속된 프레임으로 부터 Lucas-Kanade 의 Optical flow 를 이용하여 얼굴 모션을 추정한다. 정확한 얼굴 모션 추정을 하기 위해 IRLS 방법을 이용하여 각 픽셀에 대한 가중치를 설정하게 된다. 또한, 동적 템플릿을 이용해 오랫동안 정확한 얼굴 모션 추정하는 방법을 제안한다.

  • PDF

Dynamic Adaptive Model for WebMedia Educational Systems based on Discrete Probability Techniques (이산 확률 기법에 기반한 웹미디어 교육 시스템을 위한 동적 적응 모델)

  • Lee, Yoon-Soo
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.921-928
    • /
    • 2004
  • This paper proposed dynamic adaptive model based on discrete probability distribution function and user profile in web based HyperMedia educational systems. This modelsrepresents application domain to weighted direction graph of dynamic adaptive objects andmodeling user actions using dynamically approach method structured on discrete probability function. Proposed probabilitic analysis can use that presenting potential attribute to useractions that are tracing search actions of user in WebMedia structure. This approach methodscan allocate dynamically appropriate profiles to user.

  • PDF

A Korean Named Entity Recognizer using Weighted Voting based Ensemble Technique (가중 투표 기반의 앙상블 기법을 이용한 한국어 개체명 인식기)

  • Kwon, Sunjae;Heo, Yoonseok;Lee, Kyunchul;Lim, Jisu;Choi, Hojeong;Seo, Jungyun
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.333-336
    • /
    • 2016
  • 본 연구에서는 개체명 인식의 성능을 향상시키기 위해, 가중 투표 방법을 이용하여 개체명 인식 모델을 앙상블 하는 방법을 제안한다. 각 모델은 Conditional Random Fields의 변형 알고리즘을 사용하여 학습하고, 모델들의 가중치는 다목적 함수 최적화 기법인 NSGA-II 알고리즘으로 학습한다. 실험 결과 제안 시스템은 $F_1Score$ 기준으로 87.62%의 성능을 보여, 단독 모델 중 가장 높은 성능을 보인 방법보다 2.15%p 성능이 향상되었다.

  • PDF