• Title/Summary/Keyword: 가중치 기법

Search Result 1,644, Processing Time 0.026 seconds

Image-Based Ego-Motion Detect of the Unmanned Helicopter using Adaptive weighting (적응형 가중치를 사용한 영상기반 무인 헬리콥터의 Ego-Motion)

  • Chon, Jea-Choon;Chae, Hee-Sung;Shin, Chang-Wan;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.653-655
    • /
    • 1999
  • 카메라 영상을 통하여 무인 헬리콥터 동작을 추정하기 위해 적응형 가중치를 사용한 새로운 Ego-Motion을 검출 기법을 제안하였다. 무인 헬리콥터 동적 특성은 비선형이며, 심한 진동 발생으로 영상 번짐(blur) 현상이 나타나기 때문에 상관 값만을 고려한 정합 방법으로는 빈번히 오차가 발생한다. 본 논문에서는 가속도, 각 가속도 및 제어입력 값에 의한 위치 추정 값과 상관 값 및 에지 강도를 가중치에 의해 융합하여 정확한 Ego-Motion을 계산할 수 있는 기법을 제안하였다. 또한 무인 헬리콥터의 가속도, 각 가속도, 상하 속도에 따라서 영상의 번짐 정도가 달라 이들 같이 크면 위치오차에 가중을 크게 주고, 작으면 상관 값에 가중치를 적게 주는 적응형 가중치 결정 알고리즘을 적용하였다. 제안한 적응형 가중치 기법을 무인 헬리콥터에 실험한 결과 카메라에 포착된 영상에 의해 무인헬기의 동작을 정확히 추정 할 수 있었다.

  • PDF

Estimation of Missing Rainfall Data Considering Spatio-Temporal Variation Using Radar Data (레이더 자료를 이용한 시공간적 변동성을 고려한 강우의 결측치 추정)

  • Song, Chang-U;Song, Chang-Joon;Kim, Byeong-Sik;Kim, Soo-Jun;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1196-1200
    • /
    • 2010
  • 본 논문에서는 지점 강우의 결측치를 추정하기 위해 전통적인 통계학적 내삽기법을 이용한 역거리가중치법(IDWM), 역지수가중치법(IEWM), 상관계수가중치법(CCWM)과 패턴 인식의 일종인 인공신경망(ANN)기법 그리고 시공간적 강우분포의 측정이 가능한 레이더 자료를 이용해 결측치를 추정하여 각각의 방법을 비교하였다. 임진강 유역의 15개 지상관측소를 대상으로 교차검정(Cross validation) 분석을 실시해 본 결과, CCWM 방법과 ANN기법에 의한 RMSE가 0.46~1.79의 범위를 보였고, 보정레이더를 이용하여 결측치를 추정한 경우RMSE가 0.05~2.26의 범위를 보여 기존의 전통적 결측치 추정방법보다 실측치에 가까운 결과를 보였다. 이는 레이더자료가 지점 강우자료와는 달리 강우의 시공간적 변동성을 고려한 공간분포의 정보를 지니고 있기 때문인 것으로 판단된다.

  • PDF

A Weight Distance-based Clustering for MultiDatabase Mining (다중데이터베이스 마이닝에서 가중치 거리를 이용한 클러스터링)

  • 김진현;윤성대
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.695-697
    • /
    • 2003
  • 다중데이터베이스 마이닝에서 하나의 데이터 집합을 형성하는 작업은 많은 부하가 따른다. 그러므로, 본 논문에서는, 가중치 거리를 이용한 클러스터링을 통해 관련성이 높은 데이터베이스를 식별하는 기법을 제안한다. 제안한 기법은 빈발한 항목으로 구성된 데이터 집합을 생성하여 데이터베이스 사이의 유사성과 거리를 측정하고 데이터베이스간의 거리에 대한 식별성을 향상시키기 위하여 최다 빈발항목에 대한 비교 연산을 통해 가중치를 산출한다. 그리고 성능평가를 통하여 제안한 기법이 Ideal&Goodness 기법보다 다중데이터베이스의 트랜잭션 데이터베이스에 대한 식별 능력이 우수함을 알 수 있었다.

  • PDF

Automatic Text Categorization by using Normalized Term Frequency Weighting (정규화 용어빈도가중치에 의한 자동문서분류)

  • 김수진;김민수;백장선;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.510-512
    • /
    • 2003
  • 본 논문에서는 문서의 자동 분류를 위한 용어 빈도 가중치 계산 방법으로 Box-Cox변환기법을 응용한 정규화 용어빈도 가중치를 정의하고, 이를 문서 분류에 적응하였다. 여기서 Box-Cox 변환기법이란 자료를 정규분포화 할 때 적용하는 통계적인 변환방법으로서, 본 논문에서는 이를 응용하여 새로운 용어빈도가중치 계산법을 제안한다. 문서에서 등장한 용어 빈도는 너무 많거나 적게 등장할 경우, 중요도가 떨어지게 되는데, 이는 용어의 중요도가 빈도에 따른 정규분포로 모델링 될 수 있다는 것을 의미한다. 또한 정규화 가중치 계산방법은 기존의 용어빈도 가중치 공식과 비교할 때, 용어마다 계산방법이 달라져, 로그나 루트와 같은 고정된 가중치 방법보다는 좀더 일반적인 방법이라 할 수 있다. 신문기사 8000건을 대상으로 4개의 그룹으로 나누어 실험 한 결과, 정규화 용어빈도가중치 계산방법이 모두 우위의 분류 정확도롤 가져, 본 논문에서 제안한 방법이 타당함을 알 수 있다.

  • PDF

Suggestion of Weighted Utopian Approach for Combining Weighting Methods and Utopian Approach (가중치 산정기법과 Utopian Approach를 결합한 Weighted Utopian Approach의 제안)

  • Yoo, Do-Guen;Jun, Hwan-Don;Jung, Dong-Hwi;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.119-125
    • /
    • 2010
  • The most important part in the decision making is to decide the weight of attributes which indicate the relative importance of the properties to be estimated with different criteria respectively. In this study, the new MCDM method which consider typical preexisting methods all together is proposed. For doing those, Weighted Utopian Approach is newly suggested by combining typical 7 weighting methods and distance-based Utopian Approach which is one of the MCDM methods. The suggested method has the advantage of accomplishing representativeness and universality of the MCDM methods because it incorporates multiple weighting methods of diverse characteristics. It also yields not only the one final result but also the results calculated from each weighting method, broadening the options of the choice to the alternatives. The application of the new model to virtual engineering problems show that we can perform the decision making and the assessment of priority order more objectively with it and that it has high applicability to the practice, giving us simple calculation process.

A Study on Image Compression Using Laplacian Pyramid Encoding (라플라시안 피라미드 부호화에 의한 영상 압축에 관한 연구)

  • 박유경;박지환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.175-178
    • /
    • 2000
  • 인접한 화소들간의 상관성에 대한 오류 정보만을 추출하여 전송하는 기법인 라플라시안 피라미드는 알고리즘 구성이 간단하며, 낮은 엔트로피 전송이 가능한 무손실 예측 압축과 점진적인 전송이 가능한 이점을 가지고 있다. 이러한 라플라시안 피라미드를 효율적으고 구성하기 위하여 기존의 5$\times$5 가중치 행렬을 3$\times$3 가중치 행렬로 구성하는 새로운 기법을 보인다. 3$\times$3 가중치행렬을 이용하는 방법이 5$\times$5 가중치 행렬에 의한 알고리즘의 구성보다 간단하면서도 압축효율이 좋음을 시뮬레이션을 통하여 보인다.

  • PDF

Component Extraction Method Using Weight Analysis between Use Cases and Classes (Use Case 및 클래스의 가중치 분석에 의한 컴포넌트 추출 기법)

  • Yu, Yeong-Ran;Kim, Su-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.8
    • /
    • pp.537-549
    • /
    • 2001
  • 소프트웨어의 생산성과 유지보수 비용을 줄여줄 수 있는 기법으로 다양한 컴포넌트 기반의 개발 방법론이 제안되고 있다. 그러나 컴포넌트 기반의 시스템에서 재사용성과 독립성이 높은 컴포넌트의 식별은 가장 중요한 성공 요소 중의 하나임에도 불구하고, 대부분의 컴포넌트 기반 방법론들에서는 직관적이고 분석자의 경험에 의존적인 컴포넌트 식별 방법만을 제공하고 있을 따름이다. 본 논문에서는 분석 단계의 산출물인 시스템의 기능 모델 Use Case 모델과 자료 모델인 클래스 모델에 기반 하여 체계적인 컴포넌트 식별 기법과 지침들을 제안한다. 먼저 클래스에 대한 Use Case의 자료 접근값을 정의하고, 정의된 접근값을 기반으로 Use Case별로 접근되는 클래스의 가중치와 클래스별 동일 접근값을 가지는 Use Case들의 가중치를 계산하다. 두 가중치를 곱하여 최종적인 Use Case&클래스 가중치를 계산하여 후보 컴포넌트 식별의 기준으로 삼는다.

  • PDF

Object Categorization Using PLSA Based on Weighting Distinctions (특이점 가중치 기반 PLSA를 이용한 객체 범주화)

  • Song, Hyun-Chul;Choi, Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.460-465
    • /
    • 2007
  • 영상 내 사물들의 카테고리를 인식하는 연구는 시각적 영상처리와 연관된 다양한 분야에서 활발히 진행되고 있다. 객체 범주화(Object Categorization)는 가정과 같은 실내에서 책상, 의자, 컵, 주전자 등의 다양한 사물들을 구분하여 인식하는데 중요한 역할을 할 수 있다. 본 논문에서는 최근 영상 내 객체들의 카테고리 분석을 위해 연구된 PLSA를 기반으로 특이점에 가중치를 부여하여, 보다 유사한 카테고리 간에 인식 성능을 향상시키는 접근법에 대하여 연구하였다. PLSA는 문서기반의 정보검색 분야로부터 소개된 기법으로, 약한 수준의 비감독 방법임에도 불구하고 인상적인 인식성능을 보여준다. 그러나 비슷한 특징점 분포를 보이는 유사한 카테고리 간의 객체 카테고리 인식에 대해서는 비교적 낮은 성능을 보인다. 본 연구에서는 카테고리간의 비교실험을 통해 각 특징점에 대하여 가중치를 부여한 PLSA를 적용하여 유사한 객체 간의 카테고리 인식 가능성을 살펴보았다. 실험에서는 기존의 PLSA 기법과 제안한 가중치를 부여 PLSA 기법을 각각 적용하여 그 성능을 비교하였다. 본 연구에서는 기존 PLSA 기법에서는 비교적 낮은 인식률을 보인 유사한 카테고리 인식에 대하여 실험 결과를 통해 가중치를 부여한 PLSA 기법이 보다 향상된 성능을 보임을 확인하였다.

  • PDF

Object Categorization Using PLSA Based on Weighting (특이점 가중치 기반 PLSA를 이용한 객체 범주화)

  • Song, Hyun-Chul;Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 2009
  • In this paper we propose a new approach that recognizes the similar categories by weighting distinctive features. The approach is based on the PLSA that is one of the effective methods for the object categorization. PLSA is introduced from the information retrieval of text domain. PLSA, unsupervised method, shows impressive performance of category recognition. However, it shows relatively low performance for the similar categories which have the analog distribution of the features. In this paper, we consider the effective object categorization for the similar categories by weighting the mainly distinctive features. We present that the proposed algorithm, weighted PLSA, recognizes similar categories. Our method shows better results than the standard PLSA.

  • PDF

Face Recognition Using PCA and Fuzzy Weighted Average Method (PCA와 퍼지 가중치 평균 기법을 이용한 얼굴 인식)

  • Woo, Young-Woon;Kim, Hyung-Soo;Park, Jae-Min;Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.315-316
    • /
    • 2011
  • 일반적으로 영상에서 얼굴 영상을 검출하고 인식하는 알고리즘은 패턴 인식 연구에 있어서 인간과 컴퓨터의 상호작용의 연구라는 면에서 아주 중요한 문제로 연구되어 왔다. 본 논문에서는 고유얼굴을 이용하여 유클리디언 거리법과 퍼지기법의 인식률을 비교해보고자 한다. PCA(Principal Component Analysis) 방식은 우수한 인식 결과를 보장하는 얼굴인식 기법중의 하나이며, 얼굴 영상을 이용하여 공분산 행렬을 계산하고, 공분산 행렬을 통해 생성된 저차원의 벡터, 즉 고유얼굴(Eigenface)을 이용하여 가중치를 계산하고, 이 가중치를 기준으로 인식을 수행하는 기법이다. 이를 기반으로 하여, 본 논문에서는 전처리 과정, 고유얼굴 과정, 유클리디언 거리법 및 퍼지 소속도 함수 설계 과정, 신경망 학습과정, 인식과정으로 구성된 5단계의 얼굴 인식 알고리즘을 제안한다.

  • PDF