• Title/Summary/Keyword: 가중치 기반 결합

Search Result 146, Processing Time 0.037 seconds

Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning (메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현)

  • An, Hyeon Woo;You, Hea Woon;Kim, Dea Yeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF

Medical Image Classification and Keyword Annotation Using Combination of Random Forests and Relation Weight (Random Forests와 관계 가중치 결합을 이용한 의료 영상 분류 및 주석 자동 생성)

  • Lee, Ji-hyun;Kim, Seong-hoon;Ko, Byoung-chul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.596-598
    • /
    • 2010
  • 본 논문에서는 의료영상 중 X-ray 영상을 대상으로 영상을 분류하고 분류 결과에 따라 다중 키워드를 생성하는 방법을 제시한다. X-ray영상은 대부분 그레이 영상임으로 Local Binary Patterns (LBP)을 이용하여 픽셀간의 연관성을 특징으로 추출하고, 실시간 학습 및 분류가 가능한 Random Forests 분류기로 영상들을 30개의 클래스로 분류한다. 또한, 미리 정의된 신체 부위간의 관계 가중치를 분류 스코어에 결합하여 신뢰값을 생성하고 이를 기반으로 영상에 대해 다중 주석을 부여하게 된다. 이렇게 부여된 다중 주석은 키워드 기반의 의료영상을 가능케 함으로 보다 쉽고 효율적인 검색 환경을 제공할 수 있다.

Automatic Classification of Blog Posts Considering Category-specific Information (범주별 고유 정보를 고려한 블로그 포스트의 자동 분류)

  • Kim, Suah;Oh, Sungtak;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.11-14
    • /
    • 2015
  • 많은 블로그 제공 사이트는 블로그 포스트 작성자에게 미리 정의된 범주 (category)에 따라 포스트의 주제에 대하여 범주를 선택할 수 있는 환경을 제공한다. 그러나 블로거들은 작성한 포스트의 범주를 매번 수동으로 선택해야 하는 불편함이 있다. 이러한 불편함의 해결을 위해 블로그 포스트를 자동으로 분류해주는 기능을 제공한다면 블로그의 활용성이 증가할 것이다. 기존의 블로그 문서 분류의 연구는 각 범주의 고유 정보를 반영하는 것에 한계가 있었다. 이러한 문제를 해결하기 위해, 본 논문에서는 범주별 고유 정보를 반영한 어휘 가중치를 제안한다. 어휘 가중치의 분석을 위하여 범주별로 블로그 문서를 수집하고, 수집한 문서에서 어휘의 빈도와 문서의 빈도, 범주별 어휘빈도 등을 고려하여 새로운 지표인 CTF, CDF, IECDF를 개발하였다. 이러한 지표를 기반으로 기존의 Naive Bayes 알고리즘으로 학습하여, 블로그 포스트를 자동으로 분류하였다. 실험에서는 본 논문에서 제안한 가중치 방법인 TF-CTF-CDF-IECDF를 사용한 분류가 가장 높은 성능을 보였다.

  • PDF

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.

Suggestion of Weighted Utopian Approach for Combining Weighting Methods and Utopian Approach (가중치 산정기법과 Utopian Approach를 결합한 Weighted Utopian Approach의 제안)

  • Yoo, Do-Guen;Jun, Hwan-Don;Jung, Dong-Hwi;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.119-125
    • /
    • 2010
  • The most important part in the decision making is to decide the weight of attributes which indicate the relative importance of the properties to be estimated with different criteria respectively. In this study, the new MCDM method which consider typical preexisting methods all together is proposed. For doing those, Weighted Utopian Approach is newly suggested by combining typical 7 weighting methods and distance-based Utopian Approach which is one of the MCDM methods. The suggested method has the advantage of accomplishing representativeness and universality of the MCDM methods because it incorporates multiple weighting methods of diverse characteristics. It also yields not only the one final result but also the results calculated from each weighting method, broadening the options of the choice to the alternatives. The application of the new model to virtual engineering problems show that we can perform the decision making and the assessment of priority order more objectively with it and that it has high applicability to the practice, giving us simple calculation process.

Query Term Expansion and Reweighting using Term Co-Occurrence Similarity and Fuzzy Inference (용어 발생 유사도와 퍼지 추론을 이용한 질의 용어 확장 및 가중치 재산정)

  • Kim, Ju-Yeon;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.961-972
    • /
    • 2000
  • 본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의어로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의어에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정도를 결합하여 후보 용어들의 가중치를 산정 하였다. 본 논문에서는 성능을 평가하기 위하여 KT-set 1.0과 KT-set 2.0을 사용하였으며, 성능의 상대적인 평가를 위하여 Dec-Hi 방법, 용어 분포 유사도를 이용한 방법, 퍼지 추론을 이용한 방법들을 정확률-재현률을 사용하여 평가하였다.

  • PDF

MMSE-DFE와 Sparse-DFE의 등화기 계수 가중치 결합을 이용한 ToV SNR 시간율 향상 기법

  • Jeon, Seong-Ho;Lee, Jae-Gwon;Kim, Jeong-Hyeon;Im, Jung-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.250-253
    • /
    • 2014
  • 방송 서비스를 안정적으로 제공하기 위해서는 가시청시간율을 안정적으로 확보하는 것이 중요하다. 이를 위해서는 수신단에서 ToV SNR 부근에서의 추가적인 margin을 확보하는 기술이 요구된다. 기존 방송 시스템은 안테나를 하나만 사용하는 수신 환경을 가정하고 있으므로, 본 논문에서는 하나의 안테나로부터 수신된 신호를 서로 다른 equalizer 기법 2가지를 동시에 적용하여 마치 2개의 수신 안테나부터 신호를 수신한 효과를 얻었고, 그 출력을 weight combining 하여 최종 SNR 이득을 높이는 기술을 제안하였다. 특히, equalizer 기법은 기존에 성능이 우수하다고 알려져 있는 MMSE-DFE 기술과 최근 큰 주목을 받고 있는 compressed Sensing 기반 sparse-DFE 기술을 동시에 사용하였다. Simulation을 통해서 MMSE-DFE 또는 sparse-DFE를 단독으로 사용하는 것보다 두 기법을 가중치 결합을 통해서 사용함으로써 가시청시간율이 크게 향상되는 것을 확인하였다.

  • PDF

Improvement of Retrieval Performance using Automatically Weighted Image Features (영상 특징들에 자동 가중치 부여를 이용한 검색 성능 개선)

  • Kim, Kang-Wook;Park, Jong-Ho;Hwang, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.17-21
    • /
    • 2000
  • Typical image features such as color, shape, and texture are used in content based image retrieved. Retrieval which uses only one image feature has little performance in case that the content of image is complex or database contains many images. So, many approaches for integrating these features have been studied. However, the problem of these approaches is how to appropriately weight the image features at query time. In this paper, we propose a new retrieval method using automatically weighted image features. We perform computer simulations in test database which consists of various kinds of images. The experimental results show that the proposed method has better performance than previous works, which use fixed weight for each feature mostly, in respect to several performance cvaluations such as precision vs recall, retrieval efficiency, and ranking measure.

  • PDF

Optimal Hard Decision for Cooperative Spectrum Sensing in Cognitive Radio Systems (무선 인지 시스템에서 협력 스펙트럼 센싱을 위한 최적화된 경판정 방식)

  • Lee, So-Young;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.416-422
    • /
    • 2011
  • In this paper, we use hard decision method for cooperative spectrum sensing. Sensing performance adopting hard decision is lower than soft decision but system load is low and the process is relatively simple when the combining scheme is hard decision compared to soft decision. In order to improve sensing performance, we propose optimal hard decision method applying weight that is based on a probability of individual sensing. Unlike conventional hard decision, we try to improve sensing performance applying weight and show the performance of the proposed method from the simulation results and performance analysis. The signal of licensed user is OFDM signal and the wireless channel between a licensed user and CR systems is modeled as Gaussian channel.

A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size (이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법)

  • Choi, In-Bok;Lee, Jae-Dong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Collaborative filtering is a popular technique that recommends items based on the opinions of other people in recommender systems. Memory-based collaborative filtering which uses user database can be divided in user-based approaches and item-based approaches. User-based collaborative filtering predicts a user's preference of an item using the preferences of similar neighborhood, while item-based collaborative filtering predicts the preference of an item based on the similarity of items. This paper proposes a combined forecast scheme that predicts the preference of a user to an item by combining user-based prediction and item-based prediction using the ratio of the number of similar users and the number of similar items. Experimental results using MovieLens data set and the BookCrossing data set show that the proposed scheme improves the accuracy of prediction for movies and books compared with the user-based scheme and item-based scheme.