• Title/Summary/Keyword: 가정용에너지시스템

Search Result 125, Processing Time 0.029 seconds

Magnetic Induction Communication System for Electric Vehicle on Smart Grid (스마트 그리드 전기자동차를 위한 자기장 통신 시스템 구현 연구)

  • Lee, Jong-Min;Chang, Woo-Hyuk;Jung, Bang-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1381-1389
    • /
    • 2010
  • The smart grid technology is expected to significantly improve energy efficiency by dynamic power supply. One of its application is the Vehicle-to-Grid(V2G) that utilizes an electric vehicle's battery as a household storage battery. Meanwhile, a lot of researches are recently investigated in the area of wireless energy transfer technology because of its convenience and safety in charging a battery. With the wireless energy transfer infrastructure a wireless magnetic induction communication technique can help the dynamic power supply of the smart grid more efficient. In this paper, we propose a wireless magnetic induction communication sion cowhich includes data transmission and location-aware functions. We expect the sion cohelp the smart grid to control power supply more efficiently. We also developed its test-bed and evaluated the performance.

The Characteristics Analysis of Low Profile Meander 2-Layer Monopole Antenna (소형 미앤더 2-층 모노폴 안테나의 특성분석)

  • Jang, Yong-Woong;Lee, Sang-Woo;Shin, Ho-Sub
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.934-941
    • /
    • 2014
  • In this paper, we present a low profile 2-layered meander built-in monopole antenna for portable RFID reader using FDTD(Finite Difference Time Domain) method. The input impedance, return loss, and VSWR in the frequency domain are calculated by Fourier transforming the time domain results. The double meander 2-layer structure is used to enhance the impedance matching and increase the antenna gain. The measured bandwidth of the antenna is 0.895 GHz ~ 0.930 GHz for a S11 of less than -10dB. The measured peak gain of proposed low profile RFID built-in antenna is 2.3 dBi. And the proposed built-in antenna for portable RFID reader can offers relatively wide-bandwidth and high-gain characteristics, in respectively. Experimental data for the return loss and the gain of the antenna are also presented, and they are relatively in good agreement with the FDTD results. This antenna can be also applied to mobile communication field, energy fields, RFID, and home-network operations, broadcasting, and other low profile mobile systems.

Trend on Development and Application of High Performance Surfactants for Detergents (세제용 고기능성 계면활성제의 개발 및 응용 동향)

  • Rang, Moon-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • The surfactants applied in household detergents and industrial cleansers should satisfy the requirement of not just the basic function such as emulsification, solubilisation, dispersion, detergency, wetting and foaming, but also the economical efficiency and the safety to human and environment. In the viewpoint of the sustainable development, the surfactants, moreover, have to reduce raw materials and energy consumption and waste disposal when they are being manufactured and also consumed for their purposes. New high-performance surfactants have been extensively studied and developed in order to respond the change in social and economical environment. Noticeable progresses have been achieved so far, which are the significant increase in solubility and surface activity through the minor modification of existing surfactant molecular structure and the synergistic increase in a surface activity shown in the mixed surfactant system of anionic and cationic surfactants. In this review, the important and meaningful progresses achieved recently in technological advance and practical application will be summarized and discussed.

A Study on Characteristic of Hybrid PCS for Solar Power Generation Considering on a Residential Lithium Battery ESS. (가정용 리튬배터리 ESS를 고려한 태양광 발전 하이브리드 PCS 특성에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Choi, Byung-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • In this paper, we modeled the devices used easily in PV system circuits. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT control system was modeled and simulated to confirm good operation. we were constructed an actual system with the same conditions in the simulation and experimented. The purpose is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. we will do study to apply hybrid capacitors that have high energy density to the same size compared to the EDLC to DVR. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

A Study on the Utility Interactive Photovoltaic System using a Chopper and a PWM Inverter (쵸퍼와 PWM 전압형 인버터를 이용한 계통연계형 태양광발전시스템에 관한 연구)

  • 유택빈;성낙규;이승환;김성남;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.131-137
    • /
    • 1998
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. Photovoltaic system needs an inverter which can interface the dc output power of solar cell with the residential ac load. The inverter has to supply a sinusoidal current and voltage to the load and the utility line with a high power factor. This paper proposes an utility interactive photovoltaic system designed with a step-up chopper and a PWM voltage source inverter. The step-up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power points of solar cell without any influence on the variation of insolation and temperature. The voltage source inverter operates in a manner that its output voltage is in phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

A Study of the Effect of Grouting Region on the Solution of Line Source Analysis (그라우팅 영역이 선형열원 해석에 미치는 영향에 관한 연구)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.143-150
    • /
    • 2010
  • Line source method of borehole system assumes the entire surrounding medium is uniform. However, thermal properties of grouting region are considerably different from those of surrounding soil. In this study we investigate the effect of grouting materials on the solution of line source method with the aid of numerical analysis. This numerical model generates the temperature of borehole fluid with which line source solution can be obtained. Then this solution can be compared with input condition of numerical model. The results of this comparison show that thermal conductivity and borehole thermal resistance of line source solution are approximately 86% and 91% of the input condition of numerical model. Chart method is developed in this study to find the numerical input conditions (thermal conductivity and borehole thermal resistance) from the line source solution. Thermal response test of test borehole is conducted, the results of which are approximately consistent with the Chart method. Thermal property changes of grouting materials on the line source solution are also examined.

Prediction of Sucrose Hydrolysis Rate using Equivalent Time at A Reference Temperature under Regular Temperature Fluctuations (규칙적인 온도변화에서 표준온도 상당시간을 이용한 Sucrose 가수분해속도의 예측)

  • Cho, Hyung-Yong;Hong, Seok-In;Kim, Young-Sook;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.643-648
    • /
    • 1993
  • A simple approximate model using equivalent time at a reference temperature ($t_{eq}$) was derived to predict quality changes caused by temperature fluctuations. The validity and effectiveness of this model have been assessed with experimental data of sucrose hydrolysis. Kinetic parameters of sucrose hydrolysis were estimated by one step method using equivalent time at a reference temperature with linearly increasing temperature profile. Sucrose hydrolysis was a first order reaction, and the activation energy was 25.84 kcal/mol. The extent of sucrose hydrolysis of liquid model system under accelerated test with sinusoidal temperature fluctuations were determined. The proposed model yielded accurate prediction with the correlation coefficient in the range of $0.92{\sim}0.99$.

  • PDF

Design of Riser in 1MW OTEC system mounted on Floating Barge (해상 부유식 1MW 해수온도차발전 시스템의 라이저 설계)

  • Kwon, YongJu;Jung, DongHo;Kim, HyeonJu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • The design on a riser in 1MW OTEC system is performed. The minimum diameter of the riser is decided depending on intake quantity of deep-sea water to supply an OTEC cycle. An applicable pipe material is selected from analyzing the properties of commercial pipes. The selected HDPE pipe with the low density and strength is reinforced with a lumped block attached at the end of and wire ropes along the riser. A lumped block, connected to a floating structure by wire ropes, with 25% and 50% weight of a GFRP riser is designed to be attached the end of a riser. The structural safety of the HDPE riser with wire rope supporting axial loads induced by a lumped block is analyzed under the harsh ocean environmental condition near Hawaii ocean with the numerical method. The final dimension of the riser and accessories is determined considering the economic point of view. The designed riser will be applicable to the construction of the 1 MW OTEC pilot plant.

Solar Detoxification of Trichloroethylene in Waste Water with Slurry Batchtype Photoreactor (Slurry batch형 광화학 반응기를 이용한 폐수 내의 Trichlroethylene의 분해)

  • Lee, Tai-K.;Kim, Dong-H.;Cho, Sug-H.;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.10-20
    • /
    • 1992
  • In this experiment, photochemical reaction has been applied to destroy TCE in water phase. The main target of this work is to investigate the technical feasibility of large scale of solar detoxification reactor for water treatment. The results have revealed that solar detoxification utilizing photon energy from the sun is the most attractive process to decompose organic toxins in water phase at room temperature. The detailed results from this work are as follows; (1) The highest conversion ratio of TCE was obtained by using $TiO_2$, annatase as a photocatalyst among $TiO_2$ anatase, $TiO_2$ rutile and $V_2O_5$ under the same experimental condition. The anatase crystal structure was confirmed with XRD analysis, and its surface area was 7.748 $m^2/g$ from the BET-$N_2$ measurement (2) 0.1 wt% of $TiO_2$ anatase has been adopted as optimal quantity for batch slurry reactor at this experimental conditions. (3) The effect of hydrogen peroxide on the conversion of TCE was investigated. Its optimal quantity was 0.06 vol. % under this experimental conditions. (4) The effect of oxygen on the conversion of TCE also was studied by controlling the head space in photoreactor. Results indicated that sufficient amount of oxygen should be supplied to accomplish the highest conversion rate of TCE in water phase.

  • PDF