• Title/Summary/Keyword: 가정변형률 9절점 쉘 요소

Search Result 5, Processing Time 0.019 seconds

Analysis of coupled electro-mechanical system by using a nine-node assumed strain shell element (9 절점 가정변형률 쉘 요소를 이용한 전기-기계연성 시스템 해석)

  • Lee, Sang Gi;Park, Hun Cheol;Yun, Gwang Jun;Jo, Chang Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • In the present paper, formulation of a nine-node assumed strain shell element is modified and extended for analysis of actuator embedded/attached structures. The shell element can alleviate locking and has sic DOFs per node by discarding assumption of no thickness change. In modeling of the physicalquantities, we have assumed linear strain field through the whole thickness direction. The electric and mechanical quantities have been coupled through the constitutive equations. Unlike typical shell element, the present shell element allows thickness change. Thus, three-dimensional piezoelasticity can be accurately simulated. Base on the formulation, a finite element program is generated and the code is validated by solving numerical examples. The results from the present work are well agreed with those from other references.

Linear Static and Free Vibration Analysis of Laminated Composite Plates and Shells using a 9-node Shell Element with Strain Interpolation (변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석)

  • 최삼열;한성천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-293
    • /
    • 2004
  • The analysis of linear static and free vibration problems of isotropic and laminated composite plates and shells is performed by the improved 9-node shell element with the new strain displacement relationship. In that relationship, the effect of new additional terms between the bending strain and displacement has been investigated in the warping problem. Natural co ordinate based strains, stresses and constitutive equations are used. The assumed natural strain method is used to alleviate both membrane and shear locking behavior from the element. The Lanczos method is employed in the calculation of the eigenvalues of laminated composite structures and the Gauss integration rule is adopted to evaluate the mass matrix. The numerical examples are compared with the analytical solutions to validate the current formulation and the results presented could be useful for the understanding of the behaviour of laminates under free vibration conditions.

Geometrically Linear and Non-linear Analysis of Plates and Shells Resting on Arbitrary Elastic Edge Supports (임의의 탄성 경계 지점으로 지지된 판과 쉘의 기하학적 선형 및 비선형해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.11-21
    • /
    • 2008
  • A linear and non-linear analysis for plates and shells with arbitrary edge supports subjected to various loading was presented. The 9-node ANS(Assumed Natural Strain) hell element was employed and the spring element, which could express an arbitrary edge support using the six degrees of freedom, was introduced. For the application of his analysis, the plates and shells with various edge supports were analyzed, and the ending behavior with these edge supports were obtained accurately. For these edge supports, particularly elastic edge support was simulated by six springs and reasonable results were obtained. The results show that the present method can be widely used to analyze the bending behavior of plates and shells with arbitrary edge conditions.

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads (면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석)

  • Han, Sung-Cheon;Choi, Samuel
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.191-203
    • /
    • 2006
  • The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.